Implementation of Naive Bayes in Sentiment Analysis of CapCut App Reviews on the Play Store

Authors

  • Oka Alvianto STMIK IKMI Cirebon
  • Willy Prihartono STMIK IKMI Cirebon
  • Fathurrohman STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.805

Keywords:

sentiment analysis, Naive Bayes, CapCut, user reviews, Play Store

Abstract

The CapCut video editing application has gained significant popularity among mobile users. This study aims to analyze user sentiment towards CapCut reviews on the Play Store using the Naive Bayes algorithm. User reviews were collected and preprocessed to clean and prepare the text for analysis. The Naive Bayes algorithm was employed to classify the reviews into positive and negative sentiment categories. Findings indicate that the majority of user reviews are positive, highlighting features such as ease of use, attractive visual effects, and the ability to share videos on social media. However, negative reviews were also identified, primarily criticizing issues like bugs, intrusive advertisements, and limitations in specific features. This research provides valuable insights into user sentiment towards CapCut, which can be utilized by developers to enhance application quality and user experience.

Downloads

Download data is not yet available.

References

E. W. Sholeha, S. Yunita, R. Hammad, V. C. Hardita, and K. Kaharuddin, “Analisis Sentimen Pada Agen Perjalanan Online Menggunakan Naïve Bayes dan K-Nearest Neighbor,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 4, pp. 203–208, 2022, doi: 10.35746/jtim.v3i4.178.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

P. Sari, E. Qomariah, M. Jazuli, and ..., “Pemanfaatan Aplikasi Android dalam Promosi Kain Sasirangan oleh Pengrajin di Bantaran Sungai Lulut sebagai Digital Startup di Masa Pandemi Covid-19,” Pros. Semin. …, pp. 612–622, 2023.

V. F. Anindya et al., “JIFSI: Jurnal Informatika dan Sistem Informasi Analisis Sentimen Ulasan Aplikasi Capcut Menggunakan Metode Naive Bayes,” vol. 3, no. 1, pp. 24–33, 2023.

R. Fachrina and Z. M.Nawawi, “Pemanfaatan Digital Marketing (Shopee) Dalam Meningkatkan Penjualan Pada UMKM Di Marelan,” J. Ilm. Mhs. Perbank. Syariah, vol. 2, no. 2, pp. 247–254, 2022, doi: 10.36908/jimpa.v2i2.75.

K. A. Nugraha, “Analisis Sentimen Berbasis Emoticon pada Komentar Instagram Bahasa Indonesia Menggunakan Naïve Bayes,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 3, pp. 715–721, 2021, doi: 10.28932/jutisi.v7i3.4094.

Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 802–808, 2021, doi: 10.29207/resti.v5i4.3308.

D. Al Ghozi and F. N. Hasan, “Implementation of User Sentiment with Naïve Bayes Algorithm to Analyze LinkedIn Application Regarding Job Vacancies in the Play Store,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1647, 2024, doi: 10.30865/mib.v8i3.7879.

Abdullah, D., Zarlis, M., Pardede, A. M. H., Anum, A., Suryani, R., Parwito, ... & Setiyadi, D. (2019, November). Expert System Diagnosing Disease of Honey Guava Using Bayes Method. In Journal of Physics: Conference Series (Vol. 1361, No. 1, p. 012054). IOP Publishing.

Lestari, S. A. M., Pardede, A. M., & Simanjuntak, M. (2024). Prediksi Disleksia pada Anak menggunakan Metode Naive Bayes. Jurnal Kajian dan Penelitian Umum, 2(5), 37-51

Downloads

Published

2025-02-15

How to Cite

Oka Alvianto, Willy Prihartono, & Fathurrohman. (2025). Implementation of Naive Bayes in Sentiment Analysis of CapCut App Reviews on the Play Store. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1044–1049. https://doi.org/10.59934/jaiea.v4i2.805