Implementation of the Naive Bayes Method in Sentiment Analysis of Spotify Application Reviews

Authors

  • Agung Triyono STMIK IKMI Cirebon
  • Ahmad Faqih STMIK IKMI Cirebon
  • Fathurrohman STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.824

Keywords:

Sentiment analysis, Naive Bayes algorithm, Spotify reviews, text preprocessing, machine learning

Abstract

This study focuses on sentiment analysis of Spotify application reviews on Google Play Store using the Naive Bayes algorithm. As a leading music streaming platform, Spotify receives diverse user feedback that reflects their experiences, complaints, and satisfaction. Sentiment analysis aids in understanding user opinions, enhancing services, and innovating features. The research involves collecting user reviews via web scraping, followed by preprocessing steps such as text cleaning, tokenization, normalization, stopword removal, and stemming. The Term Frequency-Inverse Document Frequency (TF-IDF) method is employed to assign weights to words, highlighting their significance in reviews. The Naive Bayes algorithm categorizes sentiments into positive, negative, and neutral classes. Performance evaluation uses a confusion matrix to measure accuracy, precision, recall, and F1-score. Results indicate that Naive Bayes effectively classifies large volumes of unstructured data with high accuracy and efficiency. This study contributes practically by offering actionable insights to improve Spotify's services and theoretically by advancing sentiment analysis methodologies using machine learning. The findings highlight the algorithm's potential to understand user needs and address issues, reinforcing its value in text analytics for mobile applications.

Downloads

Download data is not yet available.

References

F. A. Indriyani, A. Fauzi, and S. Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine Tiktok application sentiment analysis using naïve bayes algorithm and support vector machine,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, pp. 176–184, 2023, doi: 10.37373/tekno.v10i2.419.

G. Z. Dhamara, D. N. Alamsyah, and P. Wildan, “Analisis Sentimen Aplikasi Mybca Melalui Review Pengguna Di Google Play Store Menggunakan Algoritma Naive Bayes,” SEMNAS INOTEK (Seminar Nas. Inov. Teknol., vol. 8, 2024.

M. Yasir, B. Nugraha, R. Susanto, and A. I. Pradana, “Rancang Bangun Media Pembelajaran Pengenalan Kombinasi Warna Berbasis Mikrokontroler dengan Visualisasi Desktop,” Pros. SNFA (Seminar Nas. Fis. dan Apl., pp. 157–166, 2020, [Online]. Available: https://doi.org/10.20961/prosidingsnfa.v5i0.46606

Syafrizal, M. Afdal, Novita, and Rice, “Sentiment Analysis of PLN Mobile Application Review Using Naïve Bayes Classifier and K-Nearest Neighbor Algorithm Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. January, pp. 10–19, 2024.

A. O. Praneswara and N. Cahyono, “Analisis Sentimen Ulasan Aplikasi TikTok Shop Seller Center di Google Playstore Menggunakan Algoritma Naive Bayes,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 3925–3940, 2023.

M. Ramdan, A. Surya, and U. Hayati, “ANALISIS SENTIMEN ULASAN PENGGUNA OVO MENGGUNAKAN,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2780–2786, 2024.

M. K. Insan, U. Hayati, and O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023.

M. D. Rhajendra and N. Trianasari, “Analisis Sentimen Ulasan Aplikasi Spotify Untuk Peningkatan Layanan Menggunakan Algoritma Naive Bayes Sentiment Analysis of Spotify Application Reviews for Service Improvement Using Naive Bayes Algorithm,” e-Proceeding Manag., vol. 8, no. 5, pp. 4367–4376, 2021.

Pardede, A. M. H. (2018). Perancangan Sistem Pakar Diagnosa Penyakit Tanaman Kelapa Sawit Dengan Metode Bayes Study Kasus PT. Ukindo Blankahan Estate.

Abdullah, D., Zarlis, M., Pardede, A. M. H., Anum, A., Suryani, R., Parwito, ... & Setiyadi, D. (2019, November). Expert System Diagnosing Disease of Honey Guava Using Bayes Method. In Journal of Physics: Conference Series (Vol. 1361, No. 1, p. 012054). IOP Publishing.

Sawitri, S., Simanjuntak, M., & Pardede, A. M. H. (2024). APPLICATION OF NAIVE BAYES METHOD TO DIAGNOSE FMD DISEASE IN GOATS. Journal of Mathematics and Technology (MATECH), 3(2), 103-111.

Lestari, S. A. M., Pardede, A. M., & Simanjuntak, M. (2024). Prediksi Disleksia pada Anak menggunakan Metode Naive Bayes. Jurnal Kajian dan Penelitian Umum, 2(5), 37-51.

Downloads

Published

2025-02-15

How to Cite

Agung Triyono, Ahmad Faqih, & Fathurrohman. (2025). Implementation of the Naive Bayes Method in Sentiment Analysis of Spotify Application Reviews. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1091–1097. https://doi.org/10.59934/jaiea.v4i2.824