Optimizing the Classification Model for Plant Medicine Supplies Using the Decision Tree Algorithm at the Anugrah Tani Shop, Brebes Regency
Inggris
DOI:
https://doi.org/10.59934/jaiea.v4i2.825Keywords:
Decision Tree, classification, Knowledge Discovery in Database, Davies Bouldin Index, inventory managementAbstract
Retail businesses in the agricultural industry often face difficulties in estimating inventory needs, especially plant medicines which are important for protecting plants from pests and diseases. The lack of an accurate inventory prediction system can cause stock discrepancies, as happened at the Anugrah Tani Store, Brebes Regency, thereby disrupting operations and customer satisfaction. This research uses the Decision Tree classification technique to increase the accuracy of predicting the need for plant medicine supplies, with a clustering approach using the K-Means algorithm to determine the optimal K value through the Davies-Bouldin Index (DBI) calculation. A DBI value of -0.065 indicates good cluster quality with an optimal K of 2, where Cluster 0 has high inventory needs (1138 data) and Cluster 1 has low needs (4 data). The analysis results show that the accuracy level of the Decision Tree model is 98.25%, which is quite high. This model is not only able to predict inventory patterns accurately but also provides in-depth insights to support stock decision making. This research proves that the Decision Tree algorithm can help inventory management with a faster response to customer needs, while contributing to the development of machine learning-based classification models for the agricultural and retail sectors.
Downloads
References
R. Rofiani, “Penerapan Metode Klasifikasi Decision Tree dalam Prediksi,” vol. 18, no. 1, pp. 126–139.
4 Rika Nursyahfitri1, Alfanda Novebrian Maharadja2, Riva Arsyad Farissa3, Yuyun Umaidah4 1,2,3, “Klasifikasi Penentuan Jenis Obat Menggunakan Algoritma Decision Tree,” pp. 53–60, 2021.
D. Sartika, “Perbandingan Algoritma Klasifikasi Naive Bayes , Nearest Neighbour , dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,” vol. 1, no. 2, pp. 151–161, 2017.
H. Priatmojo, F. Saputra, M. H. Prasetiyo, D. Puspitasari, and D. Nurlaela, “Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree , Naive Bayes dan K-Nearest Neighbor,” vol. 3, no. 1, pp. 21–28, 2023.
U. Arfan and N. Paraga, “The Comparison of K-Means , Naïve Bayes and Decision Tree Algorithm in Predicting Fuel Oil Sales Perbandingan Algoritma K-Means , Naïve Bayes dan Decision Tree dalam Memprediksi Penjualan Bahan Bakar Minyak,” vol. 4, no. October, pp. 1379–1389, 2024.
Y. C. F. Sinta Amanad Pratiwi, Ahmad Fauzi*, Santi Arum Puspita Lestari, “Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree,” vol. 4, no. 4, pp. 2381–2388, 2024, doi: 10.30865/klik.v4i4.1681.
Suwandi, “DALAM PENENTUAN PREDIKSI STOK BARANG,” vol. 3, no. 2, pp. 12–18, 2022.
Y. Rizkita and Putri, “Prediksi pola kecelakaan kerja pada perusahaan non ekstraktif menggunakan algoritma decision tree: c4.5 dan c5.0,” vol. 2, no. 1, 2013.
R. M. Simanjorang, “Penerapan Data Mining Dalam Menentukan Persediaan Obat Dengan,” vol. 22, pp. 414–421, 2023.
A. Aziz, “Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan,” vol. 6, no. 1, pp. 117–124, 2024.
D. E. Sinaga, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat ( Studi Kasus : Apotek Franch Farma ),” vol. 2, no. 4, pp. 123–131, 2022.
T. Octaviany and A. Gunawan, “Mengoptimalkan Manajemen Persediaan Melalui Teknologi Rantai Pasokan,” vol. 01, no. 03, pp. 150–155, 2023.
M. K. Al Fatach, “Perbandingan metode algoritma c4.5 dan naive bayes untuk memprediksi penjualan kosmetik pada toko jelita 1,2,” vol. 7, no. 2, pp. 220–225, 2024.
M. F. Asshiddiqi, “1 , 2 1,” vol. 7, no. 3, pp. 9936–9948, 2020.
S. A. Greysa, “Penerapan Teknologi AI dan Machine Learning dalam Manajemen TALENTA Conference Series Penerapan Teknologi AI dan Machine Learning dalam Manajemen Rantai Pasokan,” vol. 7, no. 1, 2024, doi: 10.32734/ee.v7i1.2303.
M. P. Hilman Rifa’i1, Ryan Hamonangan2, Dian Ade Kurnia3 Kaslani4, “Implementasi Algoritma Decision Tree Dalam Klasifikasi Kompetensi Siswa,” vol. 06, no. 01, pp. 15–20, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.