K-Means Algorithm for Grouping Models of Dengue Fever Prone Areas in Cirebon City
DOI:
https://doi.org/10.59934/jaiea.v4i2.834Keywords:
K-Means; Dengue fever; Clustering; DBI; Vulnerable areasAbstract
Dengue hemorrhagic fever (DHF) is an infectious disease transmitted through the Aedes aegypti mosquito. DHF cases in Cirebon City show a significant increase every year. This study aims to classify dengue prone areas based on case data per health center in 2020-2024 obtained from the Cirebon City Health Office. The method used is the K-Means algorithm with the Knowledge Discovery in Database (KDD) approach, which includes data selection, preprocessing, data transformation, data mining, evaluation, and knowledge. Evaluation using Davies-Bouldin Index (DBI) showed optimal results at k = 6 with a DBI value of -0.445. The clustering results produced six clusters: cluster 5 (437 dengue cases in 34 health centers) showed high risk; cluster 0 (244 cases), cluster 2 (129 cases), and cluster 3 (279 cases) showed medium risk; while cluster 1 (69 cases) and cluster 4 (86 cases) showed low risk. This study shows that the K-Means algorithm is effective in identifying DHF risk distribution patterns and provides a strategic basis for the Cirebon City Health Office to prioritize interventions and develop more effective prevention strategies.
Downloads
References
M. A. Sembiring, “PENERAPAN METODE ALGORITMA K-MEANS CLUSTERING UNTUK PEMETAAN PENYEBARAN PENYAKIT DEMAM BERDARAH DENGUE (DBD),” J. Sci. Soc. Res., vol. 4, no. 3, p. 336, Oct. 2021, doi: 10.54314/jssr.v4i3.712.
K. Gustipartsani, N. Rahaningsih, R. Danar Dana, and I. Yulia Mustafa, “Data Mining Clustering Menggunakan Algoritma K-Means Pada Data Kunjungan Wisatawan Di Kabupaten Karawang,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3595–3601, 2024, doi: 10.36040/jati.v7i6.8282.
N. Puspitasari, A. Ardin Maulana, Rosmasari, and F. Alameka, “K-Means untuk Klasterisasi Daerah Rawan Penyakit Demam Berdarah K-Means for Clustering of Dengue Fever Prone Areas,” J. Sisfotenika, vol. 13, no. 1, pp. 40–52, 2023, doi: 10.30700/jst.v13i1.1337.
M. Rivalda, E. M. Hidayat, M. A. Gunawan, and D. Defriyanto, “Penerapan Metode Clustering Dalam Upaya Pencegahan Penyakit Demam Berdarah Menggunakan Algoritma K-Means (Studi Kasus: Kota Tasikmalaya),” J. Larik Ldng. Artik. Ilmu Komput., vol. 3, no. 1, pp. 1–10, Jul. 2023, doi: 10.31294/larik.v3i1.1774.
S. H. Widiastuti and R. Jumardi, “Pengelompokan Daerah Rawan Demam Berdarah dengan Metode K-Means Clustering,” J. Inf. dan Teknol., vol. 4, no. 4, pp. 185–190, Aug. 2022, doi: 10.37034/jidt.v4i4.213.
A. Apriliansyah Mohsa, P. Silva Rosiana, and Y. Umaidah, “Implementasi K-Means Dalam Pengelompokan Penyebaran Penyakit Dbd Di Jawa Barat,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, pp. 782–788, 2023, doi: 10.23960/jitet.v11i3.3344.
N. Tri Hartanti, “Mengukur Tingkat Pemahaman Mahasiswa Pada Mata Kuliah Pemrograman dengan Algoritma K-Means Clustering Measuring Students’ Level of Understanding in Programming Courses with the K-Means Clustering Algorithm,” J. Sisfotenika, vol. 12, no. 1, pp. 62–73, 2022, doi: 10.30700/jst.v12i1.1210.
J. Laurenso, D. Jiustian, F. Fernando, V. Suhandi, and T. Herlina Rochadiani, “Implementation of K-Means, Hierarchical, and BIRCH Clustering Algorithms to Determine Marketing Targets for Vape Sales in Indonesia,” J. Appl. Informatics Comput., vol. 8, no. 1, pp. 62–70, 2024, doi: 10.30871/jaic.v8i1.4871.
A. Nugroho Sihananto, A. Puspita Sari, H. Khariono, R. Akhmad Fernanda, and D. Cakra Mudra Wijaya, “Implementasi Metode K-Means Untuk Pengelompokan Kasus Covid-19 Tingkat Provinsi Di Indonesia,” J. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 76–85, Apr. 2022, doi: 10.33005/jifosi.v3i1.472.
I. Tri Gustiane, M. Martanto, and T. Suprapti, “Clustering Hasil Cek Darah Diabetes Lansia Menggunakan Metode K-Means Di Posbindu Kp. Lebakjero Desa Ciherang,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2125–2129, 2024, doi: 10.36040/jati.v8i2.9281.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.