K-Means Algorithm for Grouping Models of Dengue Fever Prone Areas in Cirebon City

Authors

  • Aida Safitri STMIK IKMI Cirebon
  • Ade Irma Purnamasari STMIK IKMI Cirebon
  • Agus Bahtiar STMIK IKMI Cirebon
  • Edi Tohidi STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.834

Keywords:

K-Means; Dengue fever; Clustering; DBI; Vulnerable areas

Abstract

Dengue hemorrhagic fever (DHF) is an infectious disease transmitted through the Aedes aegypti mosquito. DHF cases in Cirebon City show a significant increase every year. This study aims to classify dengue prone areas based on case data per health center in 2020-2024 obtained from the Cirebon City Health Office. The method used is the K-Means algorithm with the Knowledge Discovery in Database (KDD) approach, which includes data selection, preprocessing, data transformation, data mining, evaluation, and knowledge. Evaluation using Davies-Bouldin Index (DBI) showed optimal results at k = 6 with a DBI value of -0.445. The clustering results produced six clusters: cluster 5 (437 dengue cases in 34 health centers) showed high risk; cluster 0 (244 cases), cluster 2 (129 cases), and cluster 3 (279 cases) showed medium risk; while cluster 1 (69 cases) and cluster 4 (86 cases) showed low risk. This study shows that the K-Means algorithm is effective in identifying DHF risk distribution patterns and provides a strategic basis for the Cirebon City Health Office to prioritize interventions and develop more effective prevention strategies.

Downloads

Download data is not yet available.

References

M. A. Sembiring, “PENERAPAN METODE ALGORITMA K-MEANS CLUSTERING UNTUK PEMETAAN PENYEBARAN PENYAKIT DEMAM BERDARAH DENGUE (DBD),” J. Sci. Soc. Res., vol. 4, no. 3, p. 336, Oct. 2021, doi: 10.54314/jssr.v4i3.712.

K. Gustipartsani, N. Rahaningsih, R. Danar Dana, and I. Yulia Mustafa, “Data Mining Clustering Menggunakan Algoritma K-Means Pada Data Kunjungan Wisatawan Di Kabupaten Karawang,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3595–3601, 2024, doi: 10.36040/jati.v7i6.8282.

N. Puspitasari, A. Ardin Maulana, Rosmasari, and F. Alameka, “K-Means untuk Klasterisasi Daerah Rawan Penyakit Demam Berdarah K-Means for Clustering of Dengue Fever Prone Areas,” J. Sisfotenika, vol. 13, no. 1, pp. 40–52, 2023, doi: 10.30700/jst.v13i1.1337.

M. Rivalda, E. M. Hidayat, M. A. Gunawan, and D. Defriyanto, “Penerapan Metode Clustering Dalam Upaya Pencegahan Penyakit Demam Berdarah Menggunakan Algoritma K-Means (Studi Kasus: Kota Tasikmalaya),” J. Larik Ldng. Artik. Ilmu Komput., vol. 3, no. 1, pp. 1–10, Jul. 2023, doi: 10.31294/larik.v3i1.1774.

S. H. Widiastuti and R. Jumardi, “Pengelompokan Daerah Rawan Demam Berdarah dengan Metode K-Means Clustering,” J. Inf. dan Teknol., vol. 4, no. 4, pp. 185–190, Aug. 2022, doi: 10.37034/jidt.v4i4.213.

A. Apriliansyah Mohsa, P. Silva Rosiana, and Y. Umaidah, “Implementasi K-Means Dalam Pengelompokan Penyebaran Penyakit Dbd Di Jawa Barat,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, pp. 782–788, 2023, doi: 10.23960/jitet.v11i3.3344.

N. Tri Hartanti, “Mengukur Tingkat Pemahaman Mahasiswa Pada Mata Kuliah Pemrograman dengan Algoritma K-Means Clustering Measuring Students’ Level of Understanding in Programming Courses with the K-Means Clustering Algorithm,” J. Sisfotenika, vol. 12, no. 1, pp. 62–73, 2022, doi: 10.30700/jst.v12i1.1210.

J. Laurenso, D. Jiustian, F. Fernando, V. Suhandi, and T. Herlina Rochadiani, “Implementation of K-Means, Hierarchical, and BIRCH Clustering Algorithms to Determine Marketing Targets for Vape Sales in Indonesia,” J. Appl. Informatics Comput., vol. 8, no. 1, pp. 62–70, 2024, doi: 10.30871/jaic.v8i1.4871.

A. Nugroho Sihananto, A. Puspita Sari, H. Khariono, R. Akhmad Fernanda, and D. Cakra Mudra Wijaya, “Implementasi Metode K-Means Untuk Pengelompokan Kasus Covid-19 Tingkat Provinsi Di Indonesia,” J. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 76–85, Apr. 2022, doi: 10.33005/jifosi.v3i1.472.

I. Tri Gustiane, M. Martanto, and T. Suprapti, “Clustering Hasil Cek Darah Diabetes Lansia Menggunakan Metode K-Means Di Posbindu Kp. Lebakjero Desa Ciherang,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2125–2129, 2024, doi: 10.36040/jati.v8i2.9281.

Downloads

Published

2025-02-15

How to Cite

Aida Safitri, Ade Irma Purnamasari, Agus Bahtiar, & Edi Tohidi. (2025). K-Means Algorithm for Grouping Models of Dengue Fever Prone Areas in Cirebon City. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1139–1144. https://doi.org/10.59934/jaiea.v4i2.834