K-Means Algorithm to Improve Leaf Image Clustering Model for Rice Disease Early Detection

Authors

  • Gina Regiana STMIK IKMI Cirebon
  • Ade Irma Purnamasari STMIK IKMI Cirebon
  • Agus Bahtiar STMIK IKMI Cirebon
  • Edi Tohidi STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.840

Keywords:

K-Means, Early Detection, Rice disease, Image clustering, Silhouette score

Abstract

This research aims to improve the accuracy of rice leaf image clustering in early disease detection using the K-Means algorithm. The approach used involves the Knowledge Discovery in Databases (KDD) method, which includes data selection, pre-processing, data transformation, data mining, evaluation, and presentation of results. The dataset used consists of images of healthy leaves and leaves infected with diseases such as Bacterial Leaf Blight, Brown Spot, and Leaf Smut. The images are processed through grayscale conversion, noise removal, size adjustment, and data augmentation. The K-Means algorithm is applied to cluster image features based on visual similarity. Evaluation results using Silhouette Score showed that the best clustering was obtained at K=2 with a score of 0.8340, resulting in two main clusters separating healthy and infected images. This study concludes that the K-Means algorithm is able to improve the efficiency and accuracy of rice disease detection, so that it can assist farmers in taking early preventive measures and increase agricultural productivity. This implementation shows significant potential in the development of smart agriculture technology.

Downloads

Download data is not yet available.

References

M. Deden Miftah Fauzi, T. Al Mudzakir, C. Emilia Sukmawati, and J. Indra, “Deteksi Jenis Penyakit Pada Tanaman Padi Menggunakan Yolo V5,” Media Online), vol. 5, no. 1, pp. 39–48, 2024, doi: 10.30865/klik.v5i1.2009.

A. Julianto, A. Sunyoto, and W. W. Ferry, “OPTIMASI HYPERPARAMETER CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI PENYAKIT TANAMAN PADI,” Dec. 2022. [Online]. Available: https://www.kaggle.com/tedisetiady/leaf-rice-dis-

S. Agustiani, Y. Tajul Arifin, A. Junaidi, S. Khotimatul Wildah, and A. Mustopa, “Klasifikasi Penyakit Daun Padi menggunakan Random Forest dan Color Histogram,” 2022. [Online]. Available: https://www.kaggle.com/vbookshelf/rice-leaf-

A. A. Arrosyad, A. I. Purnamasari, and I. Ali, “IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING UNTUK ANALISIS PERSEBARAN UMKM DI JAWA BARAT,” Jun. 2024.

A. Maulana, K. Nur Akbar, and Nurahman, “Penerapan Clustering Menggunakan Algoritma K-Means Sebagai Analisis Produksi Komoditas Perikanan Provinsi di Indonesia,” Sep. 2021.

I. R. Nr, E. Prasetyowati, and B. Said, “Penerapan Citra Berbasis K-Means Clustering untuk Mendeteksi Penyakit Bulai Pada Komoditas Jagung Madura,” May 2023. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index

Downloads

Published

2025-02-15

How to Cite

Gina Regiana, Irma Purnamasari, A. ., Bahtiar, A., & Tohidi, E. (2025). K-Means Algorithm to Improve Leaf Image Clustering Model for Rice Disease Early Detection. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1156–1160. https://doi.org/10.59934/jaiea.v4i2.840