Optimizing Grocery Sales Data Grouping Using the Fuzzy C-Means Algorithm: Case Study of Nafhan Mart Store

Authors

  • Nafhan Khairuddin Fathin STMIK IKMI Cirebon
  • Rudi Kurniawan STMIK IKMI Cirebon
  • Saeful Anwar STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.842

Keywords:

Fuzzy C-Means, sales clustering, staple foods, clustering, davies boldin index

Abstract

The sale of staple food products at Nafhanmart Store, Cirebon Regency, includes essential household items such as rice, cooking oil, sugar, and flour, which maintain stable demand as basic necessities. This study focuses on improving sales clustering models at Nafhanmart using the Fuzzy C-Means (FCM) algorithm, a prominent method in data mining. Key factors influencing sales include price, sales volume, demand, and remaining stock. Accurate clustering analysis is vital for strategic inventory management and profit maximization. The research applies the Knowledge Discovery in Database (KDD) methodology, encompassing data selection, preprocessing, transformation, FCM implementation, and evaluation using the Davies-Bouldin Index (DBI). Attributes analyzed include price, sales volume, demand, and remaining stock. The FCM algorithm clusters data based on patterns, with DBI evaluating clustering quality and determining optimal clusters. Data analysis and visualization were conducted using RapidMiner. Results show that the FCM algorithm achieves optimal clustering quality with a DBI score of 0.452 for two clusters, outperforming three clusters (DBI 0.474) and four clusters (DBI 0.536). Price and demand are identified as critical factors influencing clustering outcomes. These findings enhance the clustering model, offering actionable insights for inventory management and sales strategy, while showcasing the FCM algorithm's adaptability for other SMEs to support data-driven decision-making.

Downloads

Download data is not yet available.

References

Ade Andani, Erine Novianta, Adhe Friam Budhi, Adek Arya, Zalika Sabina, and Wahyu Indah Sari, “Pengaruh Perkembangan Ekonomi Digital Terhadap Perusahaan Start-Up di Indonesia,” J. Kaji. dan Penelit. Umum, vol. 2, no. 1, pp. 01–11, 2024, doi: 10.47861/jkpu-nalanda.v2i1.797.

R. Kurniah, “Analisa Dan Penerapan Metode Klasifikasi Dalam Data Mining Untuk Penerimaan Siswa Jalur Non-Tulis,” J. Ilm. Inform., vol. 8, no. 01, p. 9, 2020.

E. S. Rahmadina, B. Irawan, and A. Bahtiar, “Penerapan Algoritma Fuzzy C-Means Pada Data Penjualan Distro,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2348–2354, 2024, doi: 10.36040/jati.v8i2.8467.

R. Putri et al., “Estimasi Penjualan Pada Toko Damhil Cake and Bakery Menentukan Strategi Penjualan Kue Kering,” vol. 8, no. 1, pp. 429–436, 2024.

A. Kineta, “Strategi Pengembangan Toko Kelontong di Kecamatan Gayungan,” vol. 2, no. 4, pp. 163–177, 2024.

A. C. Putra and K. D. Hartomo, “Optimalisasi Penyaluran Bantuan Pemerintah Untuk UMKM Menggunakan Metode Fuzzy C-Means,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 10, pp. 474–482, 2021, [Online]. Available: https://jurnal.iaii.or.id/index.php/RESTI/article/view/2980/423

A. E. Pramitasari and Y. Nataliani, “Perbandingan Clustering Karyawan Berdasarkan Nilai Kinerja Dengan Algoritma K-Means Dan Fuzzy C-Means,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, pp. 1119–1132, 2021, doi: 10.35957/jatisi.v8i3.957.

B. Christian and L. Hakim, “Penerapan Algoritma Fuzzy C-Means Pada Penentuan Lokasi Gudang Pendukung PT. XYZ,” Aiti, vol. 16, no. 1, pp. 31–48, 2019, doi: 10.24246/aiti.v16i1.31-48.

M. Mardiansyah, A. K. Rivai, and D. Kurnia, “Analisis Perencanaan Produksi Mebel Menggunakan Perangkat Lunak Berbasis Fuzzy Linear Programming serta Pengujian Akurasi Hasil Menggunakan Data Training dan Data Testing,” J. Inform. Univ. Pamulang, vol. 6, no. 2, pp. 232–239, 2021, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika

R. Putriyandari, W. Yuliyana, and Y. S. Rahayu, “Laporan keuangan UMKM dalam menunjang analisis pemberian kredit perusahaan UMKM,” J. Abdimas BSI J. Pengabdi. Kpd. Masy., vol. 2, no. 1, pp. 190–209, 2019, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/abdimas/article/view/4994/2982

M. Farhan Nugraha, M. Martano, and U. Hayati, “Clustering Data Indonesian Food Delivery Menggunakan Metode K-Means Pada Gofood Product List,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3484–3492, 2024, doi: 10.36040/jati.v8i3.9727.

K. A. Ngii, D. Sabrina, and R. A. Saputra, “Implementasi Algoritma Fuzzy C-Means (Fcm) Dalam Memprediksi Hasil Tangkapan Ikan Di Kota Kendari,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 7, no. 2, pp. 319–324, 2023, doi: 10.46880/jmika.vol7no2.pp319-324.

D. Azlil Huriah and N. Dienwati Nuris, “Klasifikasi Penerima Bantuan Sosial Umkm Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 360–365, 2023, doi: 10.36040/jati.v7i1.6300.

E. Sholekha, B. Irawan, and A. Bahtiar, “Analisis Penjualan Produk Snack Dan Minuman Menggunakan Metode K-Means Pada Dataset Transaksi Penjualan,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2533–2539, 2024, doi: 10.36040/jati.v8i3.9310.

U. S. Munawir Sulistyawati, “Membangun Keunggulan Kompetitif melalui Platform E- Commerce : Studi Kasus Tokopedia Abstrak,” vol. 1, no. 1, pp. 43–55, 2024, [Online]. Available: https://journal.stmiki.ac.id/index.php/jmt/article/view/776/558

Downloads

Published

2025-02-15

How to Cite

Nafhan Khairuddin Fathin, Rudi Kurniawan, & Saeful Anwar. (2025). Optimizing Grocery Sales Data Grouping Using the Fuzzy C-Means Algorithm: Case Study of Nafhan Mart Store. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1161–1168. https://doi.org/10.59934/jaiea.v4i2.842