Application of K-Means for Product Grouping Best Sellers at Planet Tire Jatibarang Branch
DOI:
https://doi.org/10.59934/jaiea.v4i2.845Keywords:
K-Means Clustering, Sales Pattern, Best Selling Products, Marketing Strategy, Data Mining.Abstract
This research aims to identify the best-selling products at Planet Tire Workshop Jatibarang Branch using the K-Means Clustering method. Understanding product sales patterns is important in designing effective marketing strategies and managing stock efficiently. This research uses sales transaction data for one year, including the number of sales, product types, and total transaction value. The analysis process includes data preprocessing, selection of relevant attributes, application of the K-Means algorithm, and validation of the optimal number of clusters with the Elbow method. As a result, products were grouped into three categories: high, medium, and low sales. The high sales cluster contributes significantly to revenue, while the medium sales cluster shows potential for improvement through promotion, and the low sales cluster requires further evaluation. This research helps management manage stock, prioritize promotions, and optimize resource allocation. However, the research has limitations as it has not considered external factors such as seasonal trends and promotions, and focuses on one branch. Development of the research in other branches can expand its benefits. The results of this study are expected to improve operational efficiency, support data-driven strategies, and enrich academic literature related to the application of K-Means in retail management and sales data analysis.
Downloads
References
D. Fitriyani, M. Jajuli, and G. Garno, “Implementasi Algoritma K-Means Untuk Klasterisasi Dalam Pengelolaan Persediaan Obat (Studi Kasus : Apotek Naza),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, pp. 2841–2848, 2024, doi: 10.23960/jitet.v12i3.4921.
M. Aji Dian Permana, M. Martanto, and U. Hayati, “Analisis Pengelompokan Penjualan Menggunakan Metode K-Means Pada Bisnis Center Smk Wahidin,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 925–936, 2024, doi: 10.36040/jati.v8i1.8695.
Taufik Hidayat, Mohamad Jajuli, and Susilawati, “Clustering daerah rawan stunting di Jawa Barat menggunakan algoritma K-Means,” INFOTECH J. Inform. Teknol., vol. 4, no. 2, pp. 137–146, 2023, doi: 10.37373/infotech.v4i2.642.
B. A. Pangestu, N. A. Kristiawan, and N. Sulistiyowati, “Clustering Obat Untuk Menentukan Pola Pemasaran Efektif di Apotek Amarta Sehat,” J. Ilm. Wahana Pendidik., vol. 8, no. 16, pp. 115–126, 2022, [Online]. Available: https://doi.org/10.5281/zenodo.7058995
S. Ega Yolanda, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Data Pasien Rehabilitasi Narkoba,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 182-`191, 2023, doi: 10.30865/klik.v4i1.1107.
L. ‘ Izzah and A. Jananto, “Penerapan Algoritma K-Means Clustering Untuk Perencanaan Kebutuhan Obat Di Klinik Citra Medika,” Progresif J. Ilm. Komput., vol. 18, no. 1, p. 69, 2022, doi: 10.35889/progresif.v18i1.769.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.