Optimizing the Social Assistance Recipient Model in CangkringVillage Using the Naïve Bayes Algorithm
DOI:
https://doi.org/10.59934/jaiea.v4i2.849Keywords:
Naive Bayes algorithm, social assistance, data accuracy, data classification, decision makingAbstract
Social assistance is one of the methods used by the government to help the underprivileged. Cangkring Village is a village in Cirebon Regency that has inaccurate data on recipients of social assistance or underprivileged people. The Naive Bayes algorithm is one of the most effective techniques in machine learning for classifying data, in determining the eligibility of recipients of social assistance. The method works with a probabilistic approach to analyze data efficiently and accurately, can group data based on attributes and produce high accuracy. The problem in Cangkring Village, namely the accuracy of data on recipients of social assistance, is still a problem that requires special attention. This inaccuracy not only reduces the effectiveness of social assistance programs but also creates injustice for people in need. Invalid and inappropriate data causes the distribution of social assistance to be suboptimal. The purpose of this study is to optimize the accuracy model of social security recipients using the Naive Bayes algorithm, which can help improve the accuracy in determining eligible recipients.The method used in the study is secondary data processing taken from social assistance recipient data in Cangkring Village. This process includes data preprocessing stages, training and testing data distribution, and implementation or application of the Naive Bayes algorithm to perform classification. The results of the study show that the Naive Bayes algorithm is able to increase the accuracy of the classification of social assistance recipients with an accuracy rate of 90%, compared to the conventional method used previously. This study contributes to providing a more efficient and targeted method in selecting social assistance recipients, so that it can improve the social assistance distribution system in the future. Thus, the Naive Bayes algorithm can be an effective method for data-based decision making in the context of social policy.
Downloads
References
N. Attamami, A. Triayudi, and R. T. Aldisa, “Analisis Performa Algoritma Klasifikasi Naive Bayes dan C4.5 untuk Prediksi Penerima Bantuan Jaminan Kesehatan,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 7, no. 2, pp. 262–269, 2023.
D. Utami and P. A. R. Devi, “Klasifikasi Kelayakan Penerima Bantuan Program Keluarga Harapan (Pkh) Menggunakan Metode Weighted Naïve Bayes Dengan Laplace Smoothing,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 4, pp. 1373–1384, 2022.
D. Kurniadi, F. Nuraeni, and M. Firmansyah, “Klasifikasi Masyarakat Penerima Bantuan Langsung Tunai Dana Desa Menggunakan Naïve Bayes dan SMOTE,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 309–320, 2023.
J. Homepage, D. Pramudita, Y. Akbar, and T. Wahyudi, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Sentiment Analysis of the Indonesian Smart College Card Program on Social Media X Using the Naive Bayes Algorithm Analisis Sentimen Terhadap Program Kartu Indonesia Pintar Kuliah Pada Med,” Malcom , vol. 4, no. October, pp. 1420–1430, 2024.
N. Rosanti, “Jurnal Teknologi Terpadu PENERAPAN MODEL MACHINE LEARNING UNTUK MENENTUKAN,” vol. 8, no. 2, pp. 127–135, 2022.
M. M. Alfitri, N. Nurahman, M. Minarni, and D. Rusda, “Evaluasi Performa Algoritma Naïve Bayes Dalam Mengklasifikasi Penerima Bantuan Pangan Non Tunai,” J. Media Inform. Budidarma, vol. 7, no. 3, p. 1433, 2023.
N. Huda, M. Hasbi, and T. Susyanto, “Seleksi Penerima Bantuan Pangan Non Tunai di Desa Menggunakan Metode Naïve Bayes dan Simple Additive Weighting,” J. Ilm. SINUS, vol. 19, no. 1, p. 39, 2021.
N. Riyanah and F. Fatmawati, “Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu,” JTIM J. Teknol. Inf. dan Multimed., vol. 2, no. 4, pp. 206–213, 2021.
E. Fitriani, “Perbandingan Algoritma C4.5 Dan Naïve Bayes Untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan,” Sistemasi, vol. 9, no. 1, p. 103, 2020.
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021.
H. Harliana and F. N. Putra, “Klasifikasi Tingkat Rumah Tangga Miskin Saat Pandemi Dengan Naïve Bayes Classifier,” J. Sains dan Inform., vol. 7, no. 2, pp. 165–173, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.