Clustering Analysis of Administrative Service Types Using K-Means (Study Case: Village bojongsalam)
DOI:
https://doi.org/10.59934/jaiea.v4i2.867Keywords:
K-Means Clustering Method, Classification, Governance Services, Bojongsalam Community, Effectiveness.Abstract
Advances in information technology present significant opportunities for the improvement of public services, especially in relation to the administrative functions of Bojongsalam Village. Reliance on traditional methods often leads to inefficiencies and inaccuracies in administrative processes. This research uses the K-Means algorithm to categorize administrative service data based on service type, document number, printing date, and accompanying remarks. Utilizing the Knowledge Discovery in Databases (KDD) framework, the analysis includes data selection, pre-processing, transformation, and clustering analysis conducted through RapidMiner software. The dataset consisted of 718 administrative records that had undergone a rigorous cleaning process, including attribute normalization. The analysis resulted in an optimal Davies-Bouldin Index (DBI) value of -0.498 at K = 4, with each cluster representing a different service utilization pattern. The issuance of Family Cards (KK) and Birth Certificates showed higher demand compared to other available services. This classification promotes workload optimization, fair resource allocation, and formulation of effective operational strategies. The application of the K-Means algorithm demonstrated its effectiveness in data clustering and made a significant contribution to technology-based administrative management. The findings lay a basic framework for addressing the needs of the community in a timely manner.
Downloads
References
References
Andi Diah Kuswanto, Azumardi Nabil Fadhila, Paulus Tri Setiawan, Muhammad Kevin Setiawan, and Dody Renal Syahputra, “Penerapan K-Means Clustering Untuk Menentukan Jumlah Pengangguran Berdasarkan Umur,” Repeater Publ. Tek. Inform. dan Jar., vol. 2, no. 3, pp. 135–146, 2024, doi: 10.62951/repeater.v2i3.116.
M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto, and D. Suhendro, “Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 30–38, 2021, doi: 10.37148/bios.v2i1.19.
H. Haviluddin, S. J. Patandianan, G. M. Putra, N. Puspitasari, and H. S. Pakpahan, “Implementasi Metode K-Means Untuk Pengelompokkan Rekomendasi Tugas Akhir,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 16, no. 1, p. 13, 2021, doi: 10.30872/jim.v16i1.5182.
N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. Dan Ilmu Komput., vol. 3, no. 1, pp. 46–56, 2024, [Online]. Available: https://doi.org/10.58602/jima-ilkom.v3i1.26
G. B. Kaligis and S. Yulianto, “Analisa Perbandingan Algoritma K-Means, K-Medoids, Dan X-Means Untuk Pengelompokkan Kinerja Pegawai,” IT-Explore J. Penerapan Teknol. Inf. dan Komun., vol. 1, no. 3, pp. 179–193, 2022, doi: 10.24246/itexplore.v1i3.2022.pp179-193.
F. Rizki Ani, R. Kurniawan, and T. Suprapti, “Penerapan Algoritma K-Means Clustering Untuk Perencanaan Persediaan Stok Sepatu Di Toko Diomclothing,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3699–3707, 2024, doi: 10.36040/jati.v7i6.8233.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.