The Application of ANN Predicts Students' Understanding of Subjects During Online Learning Using the Backpropagation Algorithm at SMAN 1 Perbaungan

Authors

  • rendiarno rendiarno STMIK Pelita Nusantara
  • Hasanul Fahmi

DOI:

https://doi.org/10.53842/jaiea.v1i2.87

Keywords:

Artificial Neural Network, Backpropagation, Predict students' understanding level, study from home

Abstract

This study is a study to predict the level of students' understanding of the subjects given by educators at SMAN 1 Perbaungan. This study aims to determine how far the level of understanding of students in understanding lessons, especially during the current covid-19 pandemic, which is a process of teaching and learning activities carried out from their respective homes or using online learning media. The method used is an artificial neural network with Backpropagation algorithm with variables used are knowledge values, skill scores, mid-semester exam results, end-semester exam results, and attitude scores. The five variables are used to support predicting the level of student understanding of the subject using the single layer Backpropagation Algorithm. The architectural model used is 5-2-1 with a success accuracy of 85%. The smaller the error value that is close to 0, the smaller the deviation of the results of the Artificial Neural Network with the desired target.

References

A. S., Rosa dan Shalahuddin, M. 2013. Rekayasa Perangkat Lunak Terstruktur Dan Berorientasi Objek. Bandung: Informatika..

Anggraini, D. (2019). Pendukung Keputusan Pemilihan Walikelas Terbaik Pada SMA Ngeri 1 Perbaungan dengan Metode Simple Additive Weighting. STMIK Pelita Nusantara Medan.

COVID-19: Perspektif Pendidikan - I Ketut Sudarsana, Ni Gusti Ayu Made Yeni Lestari, I Komang Wisnu Budi Wijaya, Astrid Krisdayanthi , Komang Yuli Andayani, Komang Trisnadewi, Ni Made Muliani, Ni Putu Sasmika Dewi, I Ketut Suparya, I Gede Dharman Gunawan, Niluh Ari Kusumawati , I Putu Yoga Purandina, Ni Komang Sutriyanti, Ni Nyoman Sudiani, Ni Wayan Adnyani, S. M. Fernanda Iragraha, I Made Astra Winaya, Gede Agus Siswadi, I Made Putra Aryana - Google Books. (n.d.). Retrieved April 27, 2021, from https://books.google.co.id/books?id=mPvrDwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Dharwiyanti, S., & Wahono, R. S. (2003). Pengantar Unified Modeling LAnguage (UML). IlmuKomputer.Com, 1–13. http://www.unej.ac.id/pdf/yanti-uml.pdf

HTML, PHP, dan MySQL untuk Pemula - Jubilee Enterprise - Google Books. (n.d.). Retrieved April 27, 2021, from https://books.google.co.id/books?id=1v17DwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Jaringan Saraf Tiruan (JST) - KajianPustaka.com. (n.d.). Retrieved April 27, 2021, from https://www.kajianpustaka.com/2016/11/jaringan-saraf-tiruan-jst.html

Muis, S. 2017. Jaringan Syaraf Tiruan - Sistem Kecerdasan Tiruan Dengan Kemampuan Belajar dan Adaptasi. Yogyakarta:Teknosain.

Neuron Adalah - Pengertian, Bagian, Fungsi, Macam Dan Sejarahnya. (n.d.). Retrieved April 27, 2021, from https://www.dosenpendidikan.co.id/neuron-adalah/

Panjang, J., & Setiabudi, D. (2015). Sistem Informasi Peramalan Beban Listrik. 1(1), 1–5.

Purba, I. S., Hartama, D., & Kirana, I. O. (2019). Implementasi Algoritma Backpropagation dalam Memprediksi Jumlah Mahasiswa Baru pada AMIK-STIKOM Tunas Bangsa Pematangsiantar. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 795. https://doi.org/10.30645/senaris.v1i0.86

Setiati, S., & Azwar, M. K. (2020). COVID-19 and Indonesia. April.

Solikhun, S., Safii, M., & Trisno, A. (2017). Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 1(1), 24. https://doi.org/10.30645/j-sakti.v1i1.26

Suendri. (2018). Implementasi Diagram UML (Unified Modelling Language) Pada Perancangan Sistem Informasi Remunerasi Dosen Dengan Database Oracle (Studi Kasus: UIN Sumatera Utara Medan). Jurnal Ilmu Komputer Dan Informatika, 3(1), 1–9. http://jurnal.uinsu.ac.id/index.php/algoritma/article/download/3148/1871

Zola, F. (2018). Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa. Jurnal Teknologi Dan Open Source, 1(1), 58–72. https://doi.org/10.36378/jtos.v1i1.12

Downloads

Published

2022-06-15

How to Cite

rendiarno, rendiarno, & Fahmi, H. (2022). The Application of ANN Predicts Students’ Understanding of Subjects During Online Learning Using the Backpropagation Algorithm at SMAN 1 Perbaungan. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 1(3), 174–182. https://doi.org/10.53842/jaiea.v1i2.87

Issue

Section

Articles