Implementation of Logistic Regression Algorithm in Predicting Tsunami Potential on Earthquake Data Parameters

Authors

  • Sofian Wira Hadi Universitas Bina Sarana Informatika
  • Ibnu Alfarobi Universitas Bina Sarana Informatika
  • Irmawati Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.59934/jaiea.v4i2.871

Keywords:

Tsunami; Earthquake; Depth; Magnitude; Logistics Regression

Abstract

This study presents the evaluation and testing of a logistic regression model for predicting earthquake-related features, including earthquake depth, magnitude, and tsunami potential. The model achieved high accuracy in predicting earthquake depth categories (99.82%) and earthquake magnitude (99.84%), but faced challenges with low recall for tsunami prediction (50%) due to class imbalance. Evaluation results showed that the model struggled to predict tsunami occurrence accurately, as the dataset contained a disproportionate number of 'no tsunami' instances. Despite these limitations, the model displayed high accuracy for earthquake depth and magnitude predictions. The testing phase revealed a series of prediction errors, particularly for the tsunami category, influenced by the imbalance in training data. The results emphasize the need for improved handling of imbalanced datasets and the potential for exploring other machine learning algorithms and techniques for better performance in multiclass classification problems. Future research could further refine these models by incorporating additional criteria and exploring other earthquake and tsunami prediction methodologies.

Downloads

Download data is not yet available.

References

A. Taufan Maulana And A. Andriansyah, “Mitigasi Bencana Di Indonesia,” Comserva J. Penelit. Dan Pengabdi. Masy., Vol. 3, No. 10, Pp. 3996–4012, 2024, Doi: 10.59141/Comserva.V3i10.1213.

A. Z. Z. Abidin, “Implementasi Algoritma C 4.5 Untuk Menentukan Tingkat Bahaya Tsunami,” Semin. Nas. Inform. 2011 (Semnasif 2011), Vol. 2011, No. Semnasif, Pp. 29–36, 2011, [Online]. Available: Http://Repository.Upnyk.Ac.Id/620/

Firdaus Laia, Tobias Duha, Mitranikasih Laia, Amirudin Khorul Huda, And Agung Jasuma, “Klasifikasi Data Gempa Bumi Di Pulau Sumatera Menggunakan Algoritma Naïve Bayes,” J. Inform., Vol. 2, No. 1, Pp. 23–27, 2023.

M. Iqbal Ramadhan, “Penerapan Data Mining Untuk Analisis Data Bencana Milik Bnpb Menggunakan Algoritma K-Means Dan Linear Regression,” J. Inform. Dan Komput., Vol. 22, No. 1, Pp. 57–65, 2017.

D. P. Utomo And B. Purba, “Prosiding Seminar Nasional Riset Information Science (Senaris) Penerapan Datamining Pada Data Gempa Bumi Terhadap Potensi Tsunami Di Indonesia,” Pros. Semin. Nas. Ris. Inf., No. September, Pp. 846–853, 2019.

A. Prasetio, M. M. Effendi, And M. N. Dwi M, “Analisis Gempa Bumi Di Indonesia Dengan Metode Clustering,” Bull. Inf. Technol., Vol. 4, No. 3, Pp. 338–343, 2023, Doi: 10.47065/Bit.V4i3.820.

B. Muslim, B. Sunardi, S. Rohadi, Y. H. Perdana, And J. Effendi, “Posibilitas Penentuan Magnitude Gempabumi Real Time Menggunakan Gps Untuk Sistem Peringatan Tsunami Di Indonesia A Possibility Of Real Time Earthquake Magnitude Determination Using Gps For Tsunaminwarning System In Indonesia,” Vol. 7, No. 2, Pp. 71–76, 2018.

M. Rijal, M. Hamsar, F. Tempola, S. Do Abdullah, And A. A. H. Usman, “Jurnal Sustainable : Jurnal Hasil Penelitian Dan Industri Terapan Penerapan Algoritma Mknn Pada Data Historis Gempa Bumi Yang Berpotensi Tsunami,” Vol. 11, No. 01, Pp. 26–33, 2022.

H. Saoud, A. Ghadi, M. Ghailani, And B. A. Abdelhakim, “Using Feature Selection Techniques To Improve The Accuracy Of Breast Cancer Classification,” In Lecture Notes In Intelligent Transportation And Infrastructure, Vol. Part F1405, Springer Nature, 2019, Pp. 307–315. Doi: 10.1007/978-3-030-11196-0_28.

A. S. Assiri, S. Nazir, And S. A. Velastin, “Breast Tumor Classification Using An Ensemble Machine Learning Method,” J. Imaging, Vol. 6, No. 6, May 2020, Doi: 10.3390/Jimaging6060039.

Downloads

Published

2025-02-15

How to Cite

Sofian Wira Hadi, Ibnu Alfarobi, & Irmawati. (2025). Implementation of Logistic Regression Algorithm in Predicting Tsunami Potential on Earthquake Data Parameters. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1217–1224. https://doi.org/10.59934/jaiea.v4i2.871