Use of Natural Language Processing in Social Media Text Analysis
DOI:
https://doi.org/10.59934/jaiea.v4i2.875Keywords:
Natural Language Processing, social media, sentiment analysis, deep learning, text classification.Abstract
Social media generates enormous volumes of text data, creating both opportunities and challenges for analysis. Natural Language Processing (NLP) enables in-depth analysis of public opinion, identification of trends and language patterns from social media texts. However, texts from social media often face problems with informal language, slang, and spelling errors. This research discusses the application of NLP techniques, such as sentiment analysis, tokenization, and text classification, and compares classical machine learning models (Naive Bayes and SVM) with deep learning models (BERT). Results show deep learning-based models excel at understanding informal language contexts, producing more accurate analysis. This study makes an important contribution in the development of AI-based applications for social media analysis.
Downloads
References
J. Camacho-Collados et al., “TweetNLP: Cutting-Edge Natural Language Processing for Social Media,” EMNLP 2022 - 2022 Conf. Empir. Methods Nat. Lang. Process. Proc. Demonstr. Sess., no. April 2022, pp. 38–49, 2022, doi: 10.18653/v1/2022.emnlp-demos.5.
A. Sandu, L. A. Cotfas, A. Stănescu, and C. Delcea, A Bibliometric Analysis of Text Mining: Exploring the Use of Natural Language Processing in Social Media Research, vol. 14, no. 8. 2024. doi: 10.3390/app14083144.
Y. A. Telaumbanua, A. Marpaung, C. Putri, D. Gulo, D. K. Wijaya, and U. Nias, “An Analysis of Two Translation Applications : Why is DeepL Translate more accurate than Google Translate ?,” vol. 4, no. 1, 2024.
T. Architecture, “TRANSLI : a Case Study for Social Media Analytics and Monitoring,” 2018.
A. Nur Oktavia, M. Iqbal, R. W. Saputra, M. I. Zulfikar, and A. Saifudin, “Implementasi Metode Natural Language Processing Dalam Studi Analisis,” J. Ilm. Ilmu Komput. dan Multimed., vol. 2, no. 1, pp. 154–159, 2024, [Online]. Available: https://jurnalmahasiswa.com/index.php/biikma
I. Huda, “Implementasi Natural Language Processing (Nlp) Untuk Aplikasi Pencarian Lokasi,” J. Nas. Teknol. Terap., vol. 3, no. 2, p. 15, 2021, doi: 10.22146/jntt.35036.
R. Khoirunisa, “Penggunaan Natural Language Processing Pada Chatbot Untuk Media Informasi Pertanian,” 2020. doi: 10.20961/ijai.v4i2.38688.
J. A. Putra and A. Budi, “Penerapan Natural Language Processing dalam Aplikasi Chatbot Sebagai Media Pencarian Informasi Dengan Menggunakan React (Studi Kasus: Institut Bisnis dan Informatika Kwik Kian Gie),” J. Inform. dan Bisnis, vol. 9, no. 2, pp. 1–12, 2020.
A. Puspitasari, A. N. Paradhita, Y. W. Tineka, V. Sulistyowati, N. K. S. Noriska, and Haryanto, “Natural Language Processing (NLP) Technology for Chatbot Website,” J. Penelit. Pendidik. IPA, vol. 10, no. SpecialIssue, pp. 319–324, 2024, doi: 10.29303/jppipa.v10ispecialissue.8241.
D. Radhian, I. Afrianto, P. Studi, and T. I. Komputer, “Pembangunan Aplikasi Chatbot Sebagai Media Pencarian Informasi Dalam Bidang Peternakan,” Progr. Stud. Tek. Inform. Komput. Indones., 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.