Application of the K-Means Method for Disease Clustering in Medical Records at Puskesmas Jatiwangi
DOI:
https://doi.org/10.59934/jaiea.v4i2.888Keywords:
Keywords: K-Means, Medical Records, Clustering, Davies-Bouldin Index, Puskesmas JatiwangiAbstract
Medical record data is often underutilized, limiting opportunities to analyze disease distribution patterns. At Puskesmas Jatiwangi, such data is primarily used for documentation purposes, providing minimal insights to support data-driven decision-making. This study applies the K-Means Clustering method to group disease types based on specific similarities, enabling better identification of disease distribution patterns.
The study utilized 556 patient medical records from October 2024, including attributes such as age, gender, and disease diagnosis. The analysis followed the Knowledge Discovery in Databases (KDD) process, which involves data selection, preprocessing, data transformation, K-Means algorithm implementation, and clustering evaluation using the Davies-Bouldin Index (DBI). Testing was conducted with varying k values from 2 to 10 to determine the optimal number of clusters.
The results indicated that the best DBI value of 0.847 was achieved at k = 2, forming two main clusters. The first cluster represented common diseases such as acute respiratory infections (ARIs) and toothaches, while the second cluster included specific conditions like sciatica and acute lymphadenitis. This study demonstrates that the K-Means method is effective for clustering medical record data, providing valuable insights into disease distribution patterns and aiding in the development of targeted health policies.
Keywords: K-Means, Medical Records, Clustering, Davies-Bouldin Index, Puskesmas Jatiwangi
Downloads
References
R. Anggraini, E. Haerani, J. Jasril, and I. Afrianty, “Pengelompokkan Penyakit Pasien Menggunakan Algoritma K-Means,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 6, p. 1840, 2022, doi: 10.30865/jurikom.v9i6.5145.
C. A. Sugianto, A. H. Rahayu, and A. Gusman, “Algoritma K-Means untuk Pengelompokkan Penyakit Pasien pada Puskesmas Cigugur Tengah,” Journal of Information Technology, vol. 2, no. 2, pp. 39–44, 2020, doi: 10.47292/joint.v2i2.30.
O. J. Harmaja, H. Halawa, W. S. Hulu, and S. Loi, “Implementasi Algoritma K-Means Clustering Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Pulo Brayan,” Sains dan Teknologi, vol. 5, no. 1, pp. 150–157, 2023.
M. A. V. Ideal, “Klasifikasi Keluhan Pasien terhadap Data Rekam Medis Pasien dengan Menggunakan Metode K Means,” Jurnal Sistim Informasi dan Teknologi, vol. 5, pp. 1–6, 2022, doi: 10.37034/jsisfotek.v5i1.151.
W. Purba, G. A. Sembiring, A. Saputra, T. Turnip, B. Jua, and I. Manihuruk, “Penerapan Data Mining Untuk Pengelolaan Data Rekam Medis Menggunakan Metode K-means Clustering Pada Rumah Sakit Royal Prima Medan,” Jurnal TEKINKOM, vol. 6, no. 1, pp. 158–168, 2023, doi: 10.37600/tekinkom.v6i1.857.
F. Fitriani, R. Kurniawan, and T. Suprapti, “Penerapan Algoritma K-Means Clustering Untuk Identifikasi Kelayakan Penerima Bantuan Program Keluarga Harapan (Pkh) Di Desa Tambaksari Ciamis,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, pp. 3363–3369, 2024, doi: 10.36040/jati.v7i6.8197.
S. Rahmayani, S. Sumarno, and Z. A. Siregar, “Analysis of K-Means Algorithm for Clustering of Covid-19 Social Assistance Recipients,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 1, pp. 77–84, 2022, doi: 10.55123/jomlai.v1i1.166.
S. Syahputra, S. Ramadani, and A. M. H. Pardede, “Menentukan Strategi Promosi Menggunakan Algoritma Clustering K-Means,” JOISIE (Journal Of Information Systems And Informatics Engineering), vol. 4, no. 1, pp. 7–14, 2020.
S. Suhada and A. M. H. Pardede, “PENGKLASTERAN DOKUMEN DENGAN MENGGUNAKAN ALGORITMA SUPPORT VECTOR CLUSTERING,” JSIK (Jurnal Sistem Informasi Kaputama), vol. 3, no. 2, pp. 1–6, 2019.
K. A. Kholil, N. Rahaningsih, and R. Danar Dana, “Penerapan Data Mining Untuk Clustering Penyakit Diare Menggunakan Algoritma K-Means (Studi kasus: Puskesmas Beber),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 3124–3131, 2024, doi: 10.36040/jati.v8i3.9616.
S. Ramadani, I. Ambarita, and A. M. H. Pardede, “METODE K-MEANS UNTUK PENGELOMPOKAN MASYARAKAT MISKIN DENGAN MENGGUNAKAN JARAK KEDEKATAN MANHATTAN CITY DAN EUCLIDEAN (STUDI KASUS KOTA BINJAI),” Journal Information System Development (ISD), vol. 4, no. 2, pp. 15–29, 2019.
S. Ramadani, I. Ambarita, and A. M. H. Pardede, “METODE K-MEANS UNTUK PENGELOMPOKAN MASYARAKAT MISKIN DENGAN MENGGUNAKAN JARAK KEDEKATAN MANHATTAN CITY DAN EUCLIDEAN (STUDI KASUS KOTA BINJAI),” Journal Information System Development (ISD), vol. 4, no. 2, pp. 15–29, 2019.
N. Damayanti, A. M. H. Pardede, and M. Sihombing, “Pengelompokan Jumlah Produksi Pipa dengan Menggunakan Metode Clustering Berdasarkan Ukuran,” VISA: Journal of Vision and Ideas, vol. 3, no. 1, pp. 240–250, 2023.
I. Dinda Anjani and A. Bahtiar, “Penerapan Algoritma K-Means Clustering Untuk Mengelompokkan Penerima Bantuan Sosial Tunai (Bst) Di Jawa Barat,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 2743–2747, 2024, doi: 10.36040/jati.v8i3.8974.
E. Dwiguna and A. Bahtiar, “Penerapan Data Mining Untuk Menentukan Penerima Bantuan Blt Menggunakan Metode Clustering K-Means Pada Desa Pamulihan,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 1382–1388, 2024, doi: 10.36040/jati.v8i2.9029.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.