Artificial Neural Network for Determining the Freshness of Nile Tilapia Based on Gill Images Using the LVQ (Learning Vector Quantization) Method

Authors

  • Mustopa Universitas Muhammadiyah Pontianak
  • Barry Caesar Octadi Universitas Muhammadiyah Pontianak
  • Rachmat Wahid Saleh Insani Universitas Muhammadiyah Pontianak

DOI:

https://doi.org/10.59934/jaiea.v4i2.889

Keywords:

Artificial Neural Network, Nile Tilapia Freshness, Gill Images, Learning Vector Quantization (LVQ), Classification.

Abstract

Determining the freshness of Nile tilapia is essential in the fisheries industry to ensure quality and safety. This study develops an Artificial Neural Network (ANN) system to classify Nile tilapia freshness based on gill images using the Learning Vector Quantization (LVQ) method, known for its effective data clustering. The process involves collecting fresh and non-fresh gill images, extracting features like color, texture, and shape, and training the ANN with the LVQ algorithm. The system achieved an accuracy of 86.67% and an F1 Score of 88.74%, demonstrating its effectiveness in identifying freshness patterns. This approach provides a reliable solution for assessing fish quality, reducing the risk of consuming non-fresh fish, and contributes to ANN-based advancements in the fisheries sector

Downloads

Download data is not yet available.

References

Y. Arifin, “Jurnal Ilmiah Universitas Batanghari Jambi Vol.16 No.1 Tahun 2016 PERTUMBUHAN DAN SURVIVAL RATE IKAN NILA ( Oreochromis. Sp ) STRAIN MERAH DAN STRAIN HITAM YANG DIPELIHARA PADA MEDIA BERSALINITAS M. Yusuf Arifin 1,” J. Ilm., vol. 16, no. 1, pp. 159–166, 2016.

“MATA IKAN PADA IDENTIFIKASI LAMA MATI IKAN SKRIPSI Oleh : Nelsy Glorya Joostensz Program Studi Teknik Informatika STMIK Global Informatika MDP Palembang,” 2020.

U. Klasifikasi, D. Mangga, S. R. Husna, F. Sains, and D. A. N. Teknologi, “UNTUK KLASIFIKASI DAUN MANGGA MENGGUNAKAN MODIFIED DIRECTION FEATURE ( MDF ) TUGAS AKHIR PENERAPAN LEARNING VECTOR QUANTIZATION ( LVQ ) MODIFIED DIRECTION FEATURE ( MDF ),” 2019.

I. D. Setyawan, “IDENTIFIKASI JENIS KELAMIN IKAN LELE (CLARIAS SP) BERDASARKAN BENTUK TUBUH DENGAN LEARNING VECTOR QUANTIZATION (LVQ),” 2015, Universitas Pembangunan Nasional Veteran Jakarta.

B. Glcm, D. A. N. Hsv, and C. A. Sari, “OPTIMASI ALGORITMA LEARNING VECTOR QUANTIZATION ( LVQ ) DALAM PENGKLASIFIKASIAN CITRA DAGING SAPI DAN DAGING BABI,” vol. 9, no. 1, pp. 1–10, 2018.

K. Ratri and R. Wardani, “Penerapan Metode Learning Vector Quantization untuk Mendiagnosa Penyakit Gangguan Lambung,” vol. 13, no. 2, pp. 135–140, 1858.

“WARNA MATA MENGGUNAKAN ALGORITMA LEARNING VEKTOR QUANTIZATION ( LVQ ) TUGAS AKHIR,” p. 2018, 2018.

P. N. Andono and T. Sutojo, Pengolahan citra digital. Penerbit Andi, 2017

M. Niswar and A. Aman, “Sistem Pendeteksi Kesegaran Ikan Bandeng Menggunakan Citra,” vol. 8, no. 2, pp. 170–179, 2016.

P. T. Putra and P. Properti, “Implementasi Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Penjualan Rumah Dengan Menggunakan Metode Backpropagation ( Studi Kasus,” vol. 4, no. 2, pp. 1–13, 2021.

E. Setyowati and S. Mariani, “Penerapan Jaringan Syaraf Tiruan dengan Metode Learning Vector Quantization ( LVQ ) untuk Klasifikasi Penyakit Infeksi Saluran Pernapasan Akut ( ISPA ),” Prism. Pros. Semin. Nas. Mat., vol. 4, pp. 514–523, 2021.

L. V. Quantization, “Penerapan Learning Vector Quantization ( LVQ ) untuk Klasifikasi Status Gizi Anak 1,” vol. 7, no. 2, pp. 155–166, 2013

Downloads

Published

2025-02-15

How to Cite

Mustopa, Barry Caesar Octadi, & Rachmat Wahid Saleh Insani. (2025). Artificial Neural Network for Determining the Freshness of Nile Tilapia Based on Gill Images Using the LVQ (Learning Vector Quantization) Method. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1269–1273. https://doi.org/10.59934/jaiea.v4i2.889