Grade 9 Student Grade Data Analysis Based on Grades Knowledge to Determine Outstanding Students with K-Means Clustering (Case Study of SMPN 2 Sindang)

Authors

  • Putri Andriani STMIK IKMI Cirebon
  • Nana Suarna STMIK IKMI Cirebon
  • Irfan Ali STMIK IKMI Cirebon
  • Dodi Solihudin STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.890

Keywords:

K-Means Clustering; Education; Academic Achievement.

Abstract

Increasing student academic achievement is one of the main challenges in the world of education. Students have diverse abilities, so a directed learning approach is needed that suits each individual's needs. At SMPN 2 Sindang, this challenge is of particular concern in improving the achievement of grade 9 students.This research aims to overcome this problem by applying the K-Means Clustering algorithm to group students based on their academic score patterns. The data used includes midterm exam scores and attendance. The K-Means algorithm was used to identify three main groups: Cluster 1 (high value), Cluster 0 (medium value), and Cluster 2 (low value).

The research results show that the K-Means algorithm is effective in identifying groups of students with similar learning needs. This grouping allows schools to design learning programs that are more effective and suit the needs of each group of students. Thus, this research makes an important contribution to the development of data-based learning methods, especially at the secondary education level.

 

 

 

Downloads

Download data is not yet available.

References

Ishak R. Volume 5 Nomor 2 Juli 2023 Penerapan Algoritma XGBoost untuk Seleksi Atribut pada K-Means dalam Clustering Penerima KIP Kuliah. Jambura Journal of Electrical and Electronics Engineering 192.

Ishak R. Clustering Prestasi Akademik Lulusan Menggunakan Metode K-Means.

Fabrianto L, Riza F, Faizah NM. KORELASI ANTARA PROFIL DAN NILAI AKADEMIS SISWA DENGAN MENGGUNAKAN ALGORITMA K-MEANS.

Yuliana DT, Fathoni MIA, Kurniawati N. Penentuan Penerima Kartu Indonesia Pintar KIP Kuliah Dengan Menggunakan Metode K-Means Clustering. Journal Focus Action of Research Mathematic (Factor M) 2022;5(1):127–141.

Febriansyah F, Muntari S. Penerapan Algoritma K-Means untuk Klasterisasi Penduduk Miskin pada Kota Pagar Alam. 2023;

Febrinita F, Dwi Puspitasari W, Zaman WI. Klasterisasi Hasil Belajar Matematika dengan Algoritma K-Means Clustering.

Novi ., Mubarok A. Penerapan Algoritma K-Means untuk Menentukan Kelas Unggulan di SMP Pelita Bandung. Infomatek 2021;32(2):97–106.

Puspita Sari Y, Primajaya A, Susilo Yuda Irawan A, et al. Implementasi Algoritma K-Means untuk Clustering Penyebaran Tuberkulosis di Kabupaten Karawang. 5(2):2020.

Ishak R. Volume 5 Nomor 2 Juli 2023 Penerapan Algoritma XGBoost untuk Seleksi Atribut pada K-Means dalam Clustering Penerima KIP Kuliah. Jambura Journal of Electrical and Electronics Engineering 192.

Saputra DA, Pakereng MAI. Analisis Data Nilai Siswa Kelas 8 Berbasis Nilai Pengetahuan Untuk Menentukan Siswa Berprestasi dengan K-Means Clustering (Kasus SMP Negeri 4 Salatiga). 2023;

Isnanto S, Widodo S. PENERAPAN DATA MINING PADA PENERIMAAN MAHASISWA BARU DENGAN ALGORITMA K-MEANS CLUSTERING. Jurnal Teknik Informasi dan Komputer (Tekinkom) 2021;4(2):158.

Abdul Majid MB, Cani YM, Enri U. Penerapan Algoritma K-Means dan Decision Tree Dalam Analisis Prestasi Siswa Sekolah Menengah Kejuruan. Jurnal Sistem Komputer dan Informatika (JSON) 2022;4(2):355.

Sholeh M, Andayati D. Penerapan Metode Clustering dengan Algoritma K-Means Pada Pengelompokan Indeks Prestasi Akademik Mahasiswa. SKANIKA: Sistem Komputer dan Teknik Informatika 2023;6(1):51–60.

Saputra EA, Nataliani Y. Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means. Journal of Information Systems and Informatics [homepage on the Internet] 2021;3(3). Available from: http://journal-isi.org/index.php/isi

Dewi S, Defit S, Yuhandri Y. Akurasi Pemetaan Kelompok Belajar Siswa Menuju Prestasi Menggunakan Metode K-Means. Jurnal Sistim Informasi dan Teknologi 2021;28–33.

Downloads

Published

2025-02-15

How to Cite

Andriani, P., Nana Suarna, Irfan Ali, & Dodi Solihudin. (2025). Grade 9 Student Grade Data Analysis Based on Grades Knowledge to Determine Outstanding Students with K-Means Clustering (Case Study of SMPN 2 Sindang). Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1349–1353. https://doi.org/10.59934/jaiea.v4i2.890