Authenticity Accuracy Improvement Through the Analysis of Signature Ownership Using Convolutional Neural Network Algorithm

Authors

  • Sangdiah STMIK IKMI Cirebon
  • Nana Suarna STMIK IKMI Cirebon
  • Irfan Ali STMIK IKMI Cirebon
  • Dendy Indriya Efendi STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.900

Keywords:

convolutional neural network, Authenticity of Signature, Prediction Accuracy

Abstract

This research aims to improve the accuracy of signature authenticity classification using a Convolutional Neural Network (CNN) model, implemented in a web-based application using the Flask framework. In the digital era, signature authentication has become a crucial component in maintaining data security and transaction validity. However, the classification of genuine and forged signatures presents its own challenges due to the unique variations in patterns and styles of each individual. Using a public dataset from Kaggle consisting of 1,084 signature images (620 forged and 464 genuine), the CNN model was trained to recognize important patterns that can differentiate genuine signatures from forged ones. The research stages include data preprocessing, CNN model training, and evaluation using Confusion Matrix metrics, including precision, recall, and F1-score, to ensure the accuracy of prediction results. The results show that the implemented CNN model achieved an accuracy of 98% in signature classification, proving its effectiveness in distinguishing between genuine and forged signatures. Additionally, the integration of the model into a Flask-based application allows users to upload signature images and receive real-time classification results, enhancing user convenience and practicality. In conclusion, this CNN model can serve as a reliable signature-based authentication solution and has the potential to be applied in various digital security applications. This research contributes to the development of more advanced and secure digital signature authentication systems.

Downloads

Download data is not yet available.

References

S. M. A. Navid, S. H. Priya, N. H. Khandakar, Z. Ferdous, and A. B. Haque, “Signature Verification Using Convolutional Neural Network,” 2019 IEEE Int. Conf. Robot. Autom. Artif. Internet-of-Things, RAAICON 2019, no. May, pp. 35–39, 2020, doi: 10.1109/RAAICON48939.2019.19.

A. Prayoga, Maimunah, P. Sukmasetya, Muhammad Resa Arif Yudianto, and Rofi Abul Hasani, “Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta,” J. Appl. Comput. Sci. Technol., vol. 4, no. 2, pp. 82–89, 2023, doi: 10.52158/jacost.v4i2.486.

R. Aryanto, M. Alfan Rosid, and S. Busono, “Penerapan Deep Learning untuk Pengenalan Tulisan Tangan Bahasa Aksara Lota Ende dengan Menggunakan Metode Convolutional Neural Networks,” J. Inf. dan Teknol., vol. 5, no. 1, pp. 258–264, 2023, doi: 10.37034/jidt.v5i1.313.

Edwin Febrywinata, “Pengenalan Dan Klasifikasi Jenis Buah Menggunakan Metode CNN Secara Sederhana Dengan Menggunakan Google Colab,” Merkurius J. Ris. Sist. Inf. dan Tek. Inform., vol. 2, no. 4, pp. 185–193, 2024, doi: 10.61132/merkurius.v2i4.162.

Rima Dias Ramadhani, A. Nur Aziz Thohari, C. Kartiko, A. Junaidi, T. Ginanjar Laksana, and N. Alim Setya Nugraha, “Optimasi Akurasi Metode Convolutional Neural Network untuk Identifikasi Jenis Sampah,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 312–318, 2021, doi: 10.29207/resti.v5i2.2754.

I. G. Adnyana, P. Sugiartawan, and I. N. B. Hartawan, “Hyperparameter Optimization Techniques for CNN-Based Cyber Security Attack Classification,” no. x, pp. 1–11, 2012, doi: 10.22146/ijccs.xxxx.

E. Setia Budi, A. Nofriyaldi Chan, P. Priscillia Alda, and M. Arif Fauzi Idris, “RESOLUSI : Rekayasa Teknik Informatika dan Informasi Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network,” Media Online, vol. 4, no. 5, p. 509, 2024, [Online]. Available: https://djournals.com/resolusi

I. P. W. Prasetia and I Made Gede Sunarya, “Image Classification of Balinese Seasoning Base Genep Based on Deep Learning,” J. Nas. Pendidik. Tek. Inform., vol. 13, no. 1, 2024, doi: 10.23887/janapati.v13i1.67967.

Tri Wahyu Qur’ana, “Implementasi Metode Convolutional Neural Network (CNN) untuk Klasifikasi Motif pada Citra Sasirangan,” Media Inform., vol. 7, no. 2, p. 10, 2023, [Online]. Available: http://jurnal.big.go.id/index.php/GM/article/view/810

J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes, and A. Valenzuela, “A review of convolutional neural network applied to fruit image processing,” Appl. Sci., vol. 10, no. 10, 2020, doi: 10.3390/app10103443.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017, doi: 10.1145/3065386.

L. Husna and S. Novia Rizki, “Pemanfaatan JST Pengenalan Keaslian Pola Tanda Tangan untuk Pencegahan Tindakan Pemalsuan Tanda Tangan,” J. Tek. Inform. Unika ST. Thomas, vol. 08, no. 01, pp. 2657–1501, 2023.

A. M. Triutama, “KLASIFIKASI PENYAKIT TANAMAN PADA DAUN KENTANG DENGAN METODE CONVOLUTIONAL NEURAL NETWORK ARSITEKTUR MOBILENET,” vol. 9, no. 9, pp. 356–363, 2022.

M. Tripathi, “Analysis of Convolutional Neural Network based Image Classification Techniques,” J. Innov. Image Process., vol. 3, no. 2, pp. 100–117, 2021, doi: 10.36548/jiip.2021.2.003.

S. Patil, A. Pawar, S. Khanna, A. Tiwari, and S. Trivedi, “Computer Technology & Applications Text Summarizer using NLP ( Natural Language Processing ),” J. Comput. Technol. Appl., vol. 12, no. 3, pp. 1–6, 2021, doi: 10.37591/JoCTA.

A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex Intell. Syst., vol. 7, no. 5, pp. 2179–2198, 2021, doi: 10.1007/s40747-021-00428-4.

Downloads

Published

2025-02-15

How to Cite

Sangdiah, Nana Suarna, Irfan Ali, & Dendy Indriya Efendi. (2025). Authenticity Accuracy Improvement Through the Analysis of Signature Ownership Using Convolutional Neural Network Algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1289–1293. https://doi.org/10.59934/jaiea.v4i2.900