Application Of K-Means Algorithm In Grouping Productive Seed Distribution Data In BPDASHL Asahan Barumun

Authors

  • Dina Patresia Samuana Manurung STIKOM Tunas Bangsa

DOI:

https://doi.org/10.53842/jaiea.v1i2.91

Keywords:

Productive Seeds, Data Distribution, Data mining, K-Means

Abstract

Preserving the environment is a human effort that must be done immediately so that survival can be maintained properly. One of the human efforts in preserving the environment is planting and maintaining trees in the surrounding environment. Balai Pengelolaan Daerah Aliran Sungai dan Hutan Lindung (BPDASHL) Asahan Barumun has a Permanent Nursery that produces 19 types of productive seeds, where productive seeds have an ecological impact for reforestation and an economic impact to improve people's welfare. BPDASHL Asahan Barumun provides and distributes productive seeds to people who want to participate in preserving the environment. Before distributing productive seeds, the nursery staff of BPDASHL Asahan Barumun conducted data collection which was added to the distribution data for productive seeds to find out to whom and how many seeds were distributed. In the data on the distribution of productive seeds of the Asahan Barumun BPDASHL, it can be seen that almost every day the distribution of productive seeds to the community is carried out, so the addition of data to the distribution data is getting more and more. Data mining is able to process large data into information in the form of patterns that have meaning for decision support. By using K-Means algorithm in classifying the 2019/2020 BPDASHL Asahan Barumun distribution data by type, so that the final results obtained are 3 clusters where there are 6 seeds that are most in demand, including suren, jengkol, mahogany, avocado, durian, coffee, 10 seeds that are quite in demand, including pine, calliandra, macadamia, petai, sugar palm, cempedak, frankincense, mango, africa, trembesi, and 3 seeds that are less desirable, including meranti, jackfruit, macadamia nut.

References

A. Taufiq, “Upaya Pemeliharaan Lingkungan Oleh Masyarakat Di Kampung Sukadaya Kabupaten Subang,” J. Geogr. Gea, vol. 14, no. 2, pp. 124–134, 2016, doi: 10.17509/gea.v14i2.3402.

Istianah, “Upaya Pelestarian Lingkungan Hidup dalam Perspektif Hadis,” Riwayah, vol. 1, no. 2, pp. 249–270, 2015.

A. N. Lailia, “Gerakan Masyarakat Dalam Pelestarian Lingkungan Hidup (Studi Tentang Upaya Menciptakan Kampung Hijau Di Kelurahan Gundih Surabaya),” J. Polit. Muda, vol. 3, no. 3, pp. 283–302, 2014.

K. Cios, W. Pedrycz, R. Swiniarski, and L. Kurgan, Data Mining: A Knowledge Discovery Approach. 2007.

F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egypt. Informatics J., vol. 16, no. 3, pp. 261–273, 2015, doi: https://doi.org/10.1016/j.eij.2015.06.005.

A. M. H. Pardede et al., “Implementation of Data Mining to Classify the Consumer’s Complaints of Electricity Usage Based on Consumer’s Locations Using Clustering Method,” in Journal of Physics: Conference Series, 2019, vol. 1363, no. 1, doi: 10.1088/1742-6596/1363/1/012079.

R. Rahim, J. Santoso, S. Jumini, G. Bhawika, D. Susilo, and D. Wibowo, “Unsupervised Data Mining Technique for Clustering Library in Indonesia,” Feb. 2021.

M. Omran, A. Engelbrecht, and A. Salman, “An overview of clustering methods,” Intell. Data Anal., vol. 11, pp. 583–605, Nov. 2007, doi: 10.3233/IDA-2007-11602.

C. Sreedhar, N. Kasiviswanath, and P. Chenna Reddy, “Clustering large datasets using K-means modified inter and intra clustering (KM-I2C) in Hadoop,” J. Big Data, vol. 4, no. 1, p. 27, 2017, doi: 10.1186/s40537-017-0087-2.

D. Abdullah et al., “Data Mining to Determine Correlation of Purchasing Cosmetics with A priori Method,” in Journal of Physics: Conference Series, 2019, vol. 1361, no. 1, doi: 10.1088/1742-6596/1361/1/012056.

N. A. Khairani and E. Sutoyo, “Application of K-Means Clustering Algorithm for Determination of Fire-Prone Areas Utilizing Hotspots in West Kalimantan Province,” Int. J. Adv. Data Inf. Syst., vol. 1, no. 1, pp. 9–16, 2020, doi: 10.25008/ijadis.v1i1.13.

E. Muningsih and S. Kiswati, “Penerapan Metode K-Means Untuk Clustering Produk Online Shop Dalam Penentuan Stok Barang,” J. Bianglala Inform., vol. 3, no. 1, pp. 10–17, 2015.

A. Rachma, A. Aden, and Y. Rusdiana, “ANALISIS CLUSTER MENGGUNAKAN ALGORITMA K-MEANS CLUSTER UNTUK CULSTERING JENIS PENYAKIT MENULAR PADA PUSKESMAS DI KECAMATAN KOTA TANGERANG,” J. Saintika Unpam J. Sains dan Mat. Unpam, vol. 2, p. 15, Aug. 2019, doi: 10.32493/jsmu.v2i1.2915.

S. S. Hilabi et al., “TechnoXplore Jurnal Ilmu Komputer & Teknologi Informasi ISSN : 2503-054X Vol 4 No: 1, April 2019,” J. Ilmu Komput. Teknol. Inf., vol. 4, no. 1, pp. 28–37, 2019.

S. Fatonah, “Penerapan Deteksi Bencana Banjir Menggunakan Metode Machine Learning,” vol. 10, pp. 119–126, 2021.

E. Yanti, “Analisis Algoritma K-Means Dalam Pengelompokan Perkara Perceraian Berdasarkan Kelurahan Di Kota Jambi,” J. Process., vol. 16, no. 1, p. 9, 2021, doi: 10.33998/processor.2021.16.1.920.

Downloads

Published

2022-06-15

How to Cite

Dina Patresia Samuana Manurung. (2022). Application Of K-Means Algorithm In Grouping Productive Seed Distribution Data In BPDASHL Asahan Barumun. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 1(3), 205–213. https://doi.org/10.53842/jaiea.v1i2.91

Issue

Section

Articles