Performance Analysis of CNN Architecture in Rice Leaf Disease Image Classification

Authors

  • Robi Aziz Zuama Universitas Bina Sarana Informatika
  • Hilmi Atha Dzahkwan Universitas Bina Sarana Informatika
  • Arief Rama Syarif Universitas Nusa Mandiri

DOI:

https://doi.org/10.59934/jaiea.v4i2.914

Keywords:

Deep Learning; Convolutional Neural Network (CNN); Rice leaf diseases; Early detection; Food security;

Abstract

The decline in rice yields in Indonesia is caused by the attacks of plant pests (OPT), including leaf diseases such as leaf blast, bacterial blight, and dwarfing. Early identification of rice diseases is a crucial step to improving productivity and food security. This study utilizes Deep Learning with Convolutional Neural Network (CNN) to detect rice leaf diseases based on digital images. The dataset consists of four classes of rice leaf diseases, totaling 5,932 images. The research process involves data collection, preprocessing, data augmentation, model training, and evaluation using accuracy, precision, recall, and F1-score metrics.

The results indicate that the CNN model achieved the highest accuracy of 99% on validation data with a training-to-validation data ratio of 80:20. The evaluation using a confusion matrix demonstrates excellent performance in distinguishing disease types. With high accuracy levels, this model has the potential to become an effective tool for early detection of rice leaf diseases, providing practical solutions for farmers in managing plant diseases.

Downloads

Download data is not yet available.

References

A. Jinan, B. H. Hayadi, and U. P. Utama, “Klasifikasi Penyakit Tanaman Padi Mengunakan Metode Convolutional Neural Network Melalui Citra Daun (Multilayer Perceptron),” J. Comput. Eng. Sci., vol. 1, no. 2, pp. 37–44, 2022.

M. D. Pratama, R. Gustriansyah, and E. Purnamasari, “Klasifikasi Penyakit Daun Pisang menggunakan Convolutional Neural Network (CNN),” J. Teknol. Terpadu, vol. 10, no. 1, pp. 1–6, 2024, doi: 10.54914/jtt.v10i1.1167.

D. Putri Ayuni, Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, “Augmentasi Data Pada Implementasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi,” Zo. J. Sist. Inf., vol. 5, no. 2, pp. 239–249, 2023, doi: 10.31849/zn.v5i2.13874.

S. Yuliany, Aradea, and Andi Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” J. Buana Inform., vol. 13, no. 1, pp. 54–65, 2022, doi: 10.24002/jbi.v13i1.5022.

S. Sheila, I. Permata Sari, A. Bagas Saputra, M. Kharil Anwar, and F. Restu Pujianto, “Deteksi Penyakit Pada Daun Padi Berbasis Pengolahan Citra Menggunakan Metode Convolutional Neural Network (CNN),” Multinetics, vol. 9, no. 1, pp. 27–34, 2023, doi: 10.32722/multinetics.v9i1.5255.

Ahmad Izzuddin and M. Rizal Wahyudi, “Pengenalan Pola Daun untuk Membedakan Tanaman Padi dan Gulma Menggunakan Metode Principal Components Analysis (PCA) dan Extreme Learning Machine (ELM),” ALINIER J. Artif. Intell. Appl., vol. 1, no. 1, pp. 44–51, 2020, doi: 10.36040/alinier.v1i1.2521.

S. K. Wildah, A. Latif, A. Mustopa, S. Suharyanto, M. S. Maulana, and A. Sasongko, “Klasifikasi Penyakit Daun Kopi Menggunakan Kombinasi Haralick, Color Histogram dan Random Forest,” J. Sist. dan Teknol. Inf., vol. 11, no. 1, p. 35, 2023, doi: 10.26418/justin.v11i1.60985.

A. Faizin, A. Tri Arsanto, Moch. Lutfi, and A. Rochim Musa, “Deep Pre-Trained Model Menggunakan Arsitektur Densenet Untuk Identifikasi Penyakit Daun Padi,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 615–621, 2022, doi: 10.36040/jati.v6i2.5475.

B. Julianto, I. N. Farida, and M. A. D. W. Dara, “Implementasi Metode CNN Pada Aplikasi Android Untuk Deteksi Penyakit Pada Daun Padi Penulis Korespondensi,” Inotek, vol. 7, pp. 2549–7952, 2023, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/

I. Irmawati, H. Hermanto, E. H. Juningsih, S. Rahmatullah, and F. Aziz, “Prediksi Lama Tinggal Pasien Rawat Inap Di Rumah Sakit Pada Masa Pandemi Covid-19 Menggunakan Metode Ensemble Learning Dan Decission Tree,” J. Inform. Kaputama, vol. 5, no. 2, pp. 391–397, 2021, doi: 10.59697/jik.v5i2.276.

Downloads

Published

2025-02-15

How to Cite

Robi Aziz Zuama, Hilmi Atha Dzahkwan, & Arief Rama Syarif. (2025). Performance Analysis of CNN Architecture in Rice Leaf Disease Image Classification . Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1393–1398. https://doi.org/10.59934/jaiea.v4i2.914