Application of Decison Tree Algorithm to Improve Student Learning Pattern Classification Model at Sempoa Sip Perjuangan

Authors

  • Aulia Agustina Sri Maharani STMIK IKMI Cirebon
  • Nana Suarna STMIK IKMI Cirebon
  • Irfan Ali STMIK IKMI Cirebon
  • Dodi Solihudin STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.915

Keywords:

Keywords: RapidMiner, Decision tree, Study Pattern

Abstract

This study aims to analyze the relationship patterns between attributes in the dataset using the Decision Tree model on the RapidMiner Studio platform. This model is used to identify various factors that affect the performance of participants in solving visual and auditory-based questions. The research stages include data preprocessing, model building, and performance evaluation based on accuracy, precision, and recall metrics. The results show that the Decision Tree is able to intuitively divide the data with attributes such as gender and test-taking method as the main factors. The final node of the decision tree provides a prediction of the number of questions that can be solved correctly. Model evaluation showed good accuracy, although there were indications of overfitting that required pruning. This research supports previous literature that highlights the influence of individual characteristics and learning methods on participant performance. The results can be used to design more personalized and effective learning strategies. Further studies are recommended to use larger datasets and other machine learning algorithms for comparison.

Downloads

Download data is not yet available.

References

D. Septhya et al., “Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 15–19, 2023, doi: 10.57152/malcom.v3i1.591.

M. F. Aditya, A. Pramuntadi, D. P. Wijaya, and Y. Wicaksono, “Implementasi Metode Decision Tree pada Prediksi Penyakit Diabetes Melitus Tipe 2,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 1104–1110, 2024, doi: 10.57152/malcom.v4i3.1284.

K. Aidi Saputra, J. Tata Hardinata, M. Ridwan Lubis, S. Retno Andani, and I. Syahputra Saragih, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Algoritma C4.5 Dalam Penerapan Tingkat Kepuasan Siswa Terhadap Media Pembelajaran Online,” Media Online), vol. 1, no. 3, pp. 113–118, 2020, [Online]. Available: https://djournals.com/klik

S. F. Damanik, A. Wanto, and I. Gunawan, “Penerapan Algoritma Decision Tree C4.5 untuk Klasifikasi Tingkat Kesejahteraan Keluarga pada Desa Tiga Dolok,” J. Krisnadana, vol. 1, no. 2, pp. 21–32, 2022, doi: 10.58982/krisnadana.v1i2.108.

A. Kisnu Darmawan and M. Makruf, “KLIK: Kajian Ilmiah Informatika dan Komputer Deteksi Gaya Belajar Siswa SMA pada Virtual Based Learning Environment(VBLE) dengan Decision Tree C4.5 dan Naive Bayes,” Media Online, vol. 3, no. 5, pp. 532–544, 2023, [Online]. Available: https://djournals.com/klik

A. H. Nasrullah, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” J. Pilar Nusa Mandiri, vol. 7, no. 2, p. 217, 2021.

Aditya Quantano Surbakti, Regiolina Hayami, and Januar Al Amien, “Analisa Tanggapan Terhadap Psbb Di Indonesia Dengan Algoritma Decision Tree Pada Twitter,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 2, no. 2, pp. 91–97, 2021, doi: 10.37859/coscitech.v2i2.2851.

A. Harun and D. Putri Ananda, “Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve bayes dan Decission Tree,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 58–64, 2021, doi: 10.57152/malcom.v1i1.63.

Downloads

Published

2025-02-15

How to Cite

Aulia Agustina Sri Maharani, Nana Suarna, Irfan Ali, & Dodi Solihudin. (2025). Application of Decison Tree Algorithm to Improve Student Learning Pattern Classification Model at Sempoa Sip Perjuangan. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1399–1403. https://doi.org/10.59934/jaiea.v4i2.915