Implementation of Data Mining Using the K-Means Algorithm to Group Students Based on Academic Performance

Authors

  • Tatang Sujana Sujana STMIK IKMI Cirebon
  • Rini Astuti STMIK LIKMI Bandung
  • Willy Prihartono STMIK IKMI Cirebon
  • Ryan Hamonangan STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i2.936

Keywords:

Data Mining, K-Means, Clustering, Academic Performance, Islamic Boarding School

Abstract

Data clustering is a critical technique in data mining that identifies patterns or groups within large datasets. This study applies the K-Means algorithm to cluster students from an Islamic boarding school based on their academic performance. The K-Means algorithm was chosen due to its ability to divide data into homogeneous clusters, facilitating a better understanding of academic characteristics for each group. Data from students' test scores—including written tests, oral exams, and classical Islamic book comprehension—were analyzed using Python. The analysis included data collection, preprocessing, determining the optimal number of clusters (K), implementing the K-Means algorithm, and validating clustering outcomes using the Davies-Bouldin Index (DBI). Results demonstrated that students could be grouped into ten clusters, with key insights to improve teaching strategies.

Data mining is a process that uses statistical techniques, mathematics, artificial intelligence, and machine learning to interact with, identify useful information, and extract knowledge from various large databases.[1] Data mining is a process that uses statistical techniques, mathematics, artificial intelligence, and machine learning to interact with, identify useful information, and extract knowledge from various large databases. [2] The purpose of this research is to group data of outstanding class students so that in the learning process at school, it is easier to facilitate education according to the students' abilities.[3]

Downloads

Download data is not yet available.

References

S. Natalia, B. Sembiring, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” vol. 1, pp. 31–40, 2022.

T. Widyanti and E. N. , Shofa Shofiah Hilabi, Agustia Hananto, Tukino, “Implementasi K-Means dan K-Nearest Neighbors pada Kategori Siswa Berprestasi,” J. Inf. dan Teknol., vol. 5, no. 1, pp. 75–82, 2023, doi: 10.37034/jidt.v5i1.255.

J. Hutagalung, “Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 1, pp. 606–620, 2022, doi: 10.35957/jatisi.v9i1.1516.

C. Satria and A. Anggrawan, “Aplikasi K-Means berbasis Web untuk Klasifikasi Kelas Unggulan,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 111–124, 2021, doi: 10.30812/matrik.v21i1.1473.

A. S. Muhammad Qusyairi1*, Zul Hidayatullah2, “Penerapan K-Means Clustering Dalam Pengelompokan Prestasi Siswa Dengan Optimasi Metode Elbow,” vol. 7, no. 2, pp. 500–510, 2024.

F. N. R. F. J. Aziz, B. D. Setiawan, and I. Arwani, “Implementasi Algoritma K-Means untuk Klasterisasi Kinerja Akademik Mahasiswa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 6, pp. 2243–2251, 2018.

R. Ishak and A. Bengnga, “Clustering Tingkat Pemahaman Mahasiswa Pada Perkuliahan Probabilitas Statistika Dengan Metode K-Means,” Jambura J. Electr. Electron. Eng., vol. 4, no. 1, pp. 65–69, 2022, doi: 10.37905/jjeee.v4i1.11997.

F. Nasari and C. J. M. Sianturi, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan Penyebaran Diare Di Kabupaten Langkat,” CogITo Smart J., vol. 2, no. 2, pp. 108–119, 2016, doi: 10.31154/cogito.v2i2.19.108-119.

R. P. Primanda, A. Alwi, and D. Mustikasari, “DATA MINING SELEKSI SISWA BERPRESTASI UNTUK MENENTUKAN KELAS UNGGULAN MENGGUNAKAN METODE K-MEANS CLUSTERING (Studi Kasus di MTS Darul Fikri ),” Komputek, vol. 5, no. 1, p. 88, 2021, doi: 10.24269/jkt.v5i1.686.

S. Haviyola, S. Susilawati, and M. Jajuli, “Pengelompokan Prestasi Siswa Guna Kualifikasi Beasiswa Berdasarkan Data Nilai Menggunakan Algoritma K-Means,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, pp. 2786–2791, 2024, doi: 10.36040/jati.v7i4.7200.

Downloads

Published

2025-02-15

How to Cite

Sujana, T. S., Rini Astuti, Willy Prihartono, & Ryan Hamonangan. (2025). Implementation of Data Mining Using the K-Means Algorithm to Group Students Based on Academic Performance. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1527–1531. https://doi.org/10.59934/jaiea.v4i2.936