Application of K-Nearest Neighbor Method for Prediction of Best-Selling Fruit Sales at Ziel Kiosk

Authors

  • Mutiara Revilianti STMIK IKMI Cirebon
  • Ade Irma Purnamasari STMIK IKMI Cirebon
  • Agus Bahtiar STMIK IKMI Cirebon
  • Edi Wahyudin STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i3.952

Keywords:

Data Mining, Prediction, K-Nearest Neighbor, Sales

Abstract

Ziel kiosk sells various types of high-quality fresh fruits. Unfortunately, there is currently no system that manages fruit sales prediction, so there is often a buildup of goods, damaged and rotten goods, or even a shortage of goods, resulting in losses for the kiosk. The data collected is less accurate and effective because the current system is operated manually. This research conducts a data mining process on fruit sales data from Ziel Kiosk from January - December 2023. In sales prediction, Fruit Kiosks can use data mining techniques to be more proactive in managing stock items. This not only avoids the accumulation of fruit stock that can cause spoilage and damage, but also reduces the risk of stock shortages that can affect customer satisfaction. The purpose of this research is to ensure that Ziel Kiosk can see the sales rate for each product sold, so that they can avoid the accumulation of goods and concentrate on the most sold products. With an 80:20 data split, the K-Nearest Neighbor model has high accuracy. This algorithm can also predict fruit sales with an accuracy rate of 97.22% by determining the categories of fruit sales that are in demand or not in demand.

Downloads

Download data is not yet available.

References

A. Azis, A. T. Zy, and A. S. Sunge, “Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan Algoritma K-Nearest Neighbor,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 1, pp. 117–124, 2024, doi: 10.47233/jteksis.v6i1.1078.

A. Ghani Muttaqin, K. Auliasari, and F. Santi Wahyuni, “Penerapan Metode K-Nearest Neighbor Untuk Prediksi Penjualan Berbasis Web Pada Pt.Wika Industri Energy,” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 2, pp. 1–6, 2020, doi: 10.36040/jati.v4i2.2728.

M. Danny, A. Muhidin, and A. Jamal, “Application of the K-Nearest Neighbor Machine Learning Algorithm to Preduct Sales of Best-Selling Products,” Brill. Res. Artif. Intell., vol. 4, no. 1, pp. 255–264, 2024, doi: 10.47709/brilliance.v4i1.4063.

A. A. Putri, “Penerapan Data Mining Untuk Memprediksi Penjualan Buah Dan Sayur Menggunakan Metode K-Nearest Neighbor ( Studi Kasus : PT . Central Brastagi Utama ),” vol. 1, no. 6, pp. 354–361, 2021.

Anwar Pauji, S. Aisyah, A. Surip, R. Saputra, and I. Ali, “Implementasi Algoritma K-Nearest Neighbor Dalam Menentukan Penerima Bantuan Langsung Tunai,” KOPERTIP J. Ilm. Manaj. Inform. dan Komput., vol. 4, no. 1, pp. 21–27, 2022, doi: 10.32485/kopertip.v4i1.114.

R. H. Saragih et al., “Penerapan Data Mining Untuk Memprediksi Penjualan Di Erigo Store Dengan K-Nearest Neighbor,” J. Ris. Sist. Inf. Dan Tek. Inform., vol. 8, no. 2, pp. 649–661, 2023, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik

N. M. A. Novitadewi, P. Sugiartawan, and ..., “Klasifikasi Data Penjualan Dengan Metode K-Nearest Neighbor Pada Pt. Terang Abadi Raya,” J. Sist. Inf. …, vol. 5, no. 1, pp. 11–20, 2022, doi: 10.33173/jsikti.173.

L. Suryadi, N. Ngajiyanto, N. E. Pratiwi, F. Ardhy, and P. Riswanto, “Penerapan Data Mining Prediksi Penjualan Mebel Terlaris Menggunakan Metode K-Nearest Neighbor(K-Nn) (Studi Kasus : Toko Zerita Meubel),” JUSIM (Jurnal Sist. Inf. Musirawas), vol. 7, no. 2, pp. 174–184, 2022, doi: 10.32767/jusim.v7i2.1697.

R. Rismala, I. Ali, and A. Rizki Rinaldi, “Penerapan Metode K-Nearest Neighbor Untuk Prediksi Penjualan Sepeda Motor Terlaris,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 585–590, 2023, doi: 10.36040/jati.v7i1.6419.

Downloads

Published

2025-06-15

How to Cite

Mutiara Revilianti, Ade Irma Purnamasari, Agus Bahtiar, & Edi Wahyudin. (2025). Application of K-Nearest Neighbor Method for Prediction of Best-Selling Fruit Sales at Ziel Kiosk. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1572–1578. https://doi.org/10.59934/jaiea.v4i3.952

Issue

Section

Articles