Improving the Regional Grouping Model for Students of SMK Muthia Harapan Using K-Means Clustering Algorithm
DOI:
https://doi.org/10.59934/jaiea.v4i3.955Keywords:
Data Mining, K-Means, Knowledge Discovery in Database, Student Home Regions, SMK Muthia Harapan CicalengkaAbstract
Education is an important aspect in human life to improve and develop self-potential. The rapid development of technology has increased the need for fast, accurate, and efficients information, including in the world of education. One of the challenges faced by SMK Muthia Harapan Cicalengka is the accumulation of student data every year. This makes it difficult to identify student data based on region of origin. This research aims to apply data mining using the K-Means Clustering method to group student data with similar characteristics. The method used in this research is Knowledge Discovery in Database (KDD) which includes the stages of data cleaning, data transformation, data mining, and evaluation. The implementation og K-Means Clustering is done using RapidMiner with attributes such as Name, Village, Department, and school of origin. The purpose of this research is to provide a targeted and strategic overview of areas that can have a significant impact on the supply of students each year. The result show that student data can be grouped into two clusters. Cluster 0 consists of 254 items and cluster 1 consists of 254 items, with a Davies-Bouldin Index (DBI) value of 0.549.
Downloads
References
A. Bellanov and L. Nurhayati, “K-Means Clustering Analysis Untuk Menentukan Strategi Promosi Kampus,” J. Tek. Ind. J. Has. Penelit. dan Karya Ilm. dalam Bid. Tek. Ind., vol. 9, no. 1, p. 259, 2023, doi: 10.24014/jti.v9i1.22492.
R. L. Pattipeilohy and M. A. I. Pakereng, “Penerapan K-Means Clustering Pada Data Mahasiswa Fakultas Interdisiplin Program Studi D4 Destinasi Pariwisata Untuk Menentukan Strategi Promosi,” J. Sains Komput. Inform. (J-SAKTI, vol. 7, no. 1, pp. 320–331, 2023.
N. Azmi, F. Helmiah, and S. Sudarmin, “Implementasi Metode K-Means Sebagai Upaya Penentuan Lokasi Promosi Penerimaan Siswa Baru,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 649–660, 2022, doi: 10.47065/bits.v3i4.1456.
Oki Oktaviarna Tensao, I Nyoman Yudi Anggara Wijaya, and Ketut Queena Fredlina, “Analisa Data Mining dengan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Pada STMIK Primakara,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 14, no. 1, pp. 1–17, 2022, doi: 10.37424/informasi.v14i1.135.
N. A. Rahmalinda and A. Jananto, “Penerapan Metode K-Means Clustering Dalam Menentukan Strategi Promosi Berdasarkan Data Penerimaan Mahasiswa Baru,” J. Tekno Kompak, vol. 16, no. 2, p. 163, 2022, doi: 10.33365/jtk.v16i2.1971.
Pardede, A. M. H. (2019). Metode K-Means untuk pengelompokan masyarakat miskin dengan menggunakan jarak kedekatan Manhattan City Dan Euclidean (Studi kasus kota binjai). Journal Information System Development (ISD), 4(2).
Syahputra, S., Ramadani, S., & Pardede, A. M. H. (2020). Menentukan Strategi Promosi Menggunakan Algoritma Clustering K-Means. JOISIE (Journal Of Information Systems And Informatics Engineering), 4(1), 7-14.
Arbaeti, E. E., Pardede, A. M. H., & Kadim, L. A. N. (2023). Application of K-Means Clustering Algorithm to Analyze Insurance Company Business (Case Study: Pt. Jasindo Insurance). Journal of Mathematics and Technology (MATECH), 2(2), 173-192.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.