K-Means Clustering to Improve Interest Grouping Model For High School Students

Authors

  • Dewi Rengganis STMIK IKMI Cirebon
  • Ade Irma Purnamasari STMIK IKMI Cirebon
  • Agus Bahtiar STMIK IKMI Cirebon
  • Edi Tohidi STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i3.959

Keywords:

Student interest, Informatics Engineering, Educations, K-Means Clustering, Davies Bouldin Index

Abstract

Informatics Engineering has a significant appeal to high school students in the digital era. However, differences in students' understanding of career prospects in this field affect their level of interest. This study aims to identify students' interest patterns using the K-Means Clustering algorithm as a basis for developing data-based strategies to increase the attractiveness of the major. This study used quantitative methods with primary data collected through questionnaires from 202 high school students. The variables analyzed include students' understanding of Informatics Engineering, interest in technology subjects, and aspirations to continue their studies in the field. The data was processed using RapidMiner software, through the stages of pre-processing, data transformation, and model evaluation. Davies-Bouldin Index (DBI) was used to determine the best number of clusters, with cluster trials (k) from 2 to 10. The results showed the best DBI value at k=2 with a score of 0.527. Two clusters were formed: Cluster 0 (uninterested students) with 96 students and Cluster 1 (interested students) with 106 students. Interested students generally have a better understanding of career prospects in technology, while less interested students need additional education to increase their interest. This research shows the importance of a data-driven approach in understanding student needs. For students with low interest, an upstream program is needed. 

Downloads

Download data is not yet available.

References

Arofah, S. N., & Marisa, F. (2018). Penerapan Data Mining untuk Mengetahui Minat Siswa pada Pelajaran Matematika menggunakan Metode K-Means Clustering. JOINTECS (Journal of Information Technology and Computer Science), 3(2), 85–90. https://doi.org/10.31328/jointecs.v3i2.787

Hariyanto, D. C., Harini, S., & Chamidy, T. (2024). K-Means Clustering Dalam Pengelompokan Relevansi Pekerjaan S1 Informatika (Studi Kasus Jurusan Teknik Informatka Umm Malang). JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 9(2), 782–797. https://doi.org/10.29100/jipi.v9i2.5507

Mardika, P. D. (2023). Algoritma K-Means Untuk Mengetahui Minat Siswa Terhadap Jurusan Teknik Informatika. Faktor Exacta, 16(2). https://doi.org/10.30998/faktorexacta.v16i2.17067

Nurul Badriyah, Hozairi, & Miftahul Walid. (2023). Penentuan Bidang Minat Tugas Akhir Mahasiswa Teknik Informatika Universitas Islam Madura Menggunakan Metode K-Means. Jurnal Informatika Teknologi Dan Sains (Jinteks), 5(4), 566–572. https://doi.org/10.51401/jinteks.v5i4.2782

Prihati, Y., Suwarno, & Dharmawan, A. (2019). Implementasi Algoritma K-Means Untuk Pemetaan Prestasi Akademik Siswa Disekolah Dasar Terang Bagi Bangsa Pati. Kinabalu, 11(2), 50–57.

Syahra, Y., Syahril, M., & Y, Y. (2019). Implementasi Data Mining Dengan Menggunakan Algoritma Fuzzy Subtractive Clustering Dalam Pengelompokan Nilai Untuk Menentukan Minat Belajar Siswa Smp Primbana Medan. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 17(1), 54. https://doi.org/10.53513/jis.v17i1.113

Widodo, W., & Wahyuni, D. (2017). Implementasi Algoritma K-Means Clustering Untuk Mengetahui Bidang Skripsi Mahasiswa Multimedia Pendidikan Teknik Informatika Dan Komputer Universitas Negeri Jakarta. PINTER : Jurnal Pendidikan Teknik Informatika Dan Komputer, 1(2), 157–166. https://doi.org/10.21009/pinter.1.2.10

Yuniarti, D. A. F., Kartika, D. L., & Prianggono, A. (2022). Analisis Minat Dan Motivasi Belajar Mahasiswa Teknik Informatika Pada Mata Kuliah Matematika. JPMI (Jurnal Pendidikan Matematika Indonesia), 7(1), 47. https://doi.org/10.26737/jpmi.v7i1.3437

Downloads

Published

2025-06-15

How to Cite

Dewi Rengganis, Ade Irma Purnamasari, Agus Bahtiar, & Edi Tohidi. (2025). K-Means Clustering to Improve Interest Grouping Model For High School Students. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1590–1596. https://doi.org/10.59934/jaiea.v4i3.959

Issue

Section

Articles