Grouping of Social Assistance Recipients Using K-Means Algorithm (Case Study: Gegunung Village Office)

Authors

  • Temu Asih STMIK IKMI Cirebon
  • Rini Astuti STMIK IKMI Cirebon
  • Willy Prihartono STMIK IKMI Cirebon
  • Ryan Hamonangan STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i3.960

Keywords:

K-Means algorithm, Social assistance, Data mining, Clustering, Davies-Bouldin Index

Abstract

The aim of this research is to use the K-Means algorithm to classify social assistance recipients in Gegunung Village based on location and nominal data. Inaccuracy and inefficiency are the main problems in the distribution of social assistance, so a technique is needed that can target grouping of recipient data. The Knowledge Discovery in Database (KDD) stage was used to process 672 data entries, including nominal information, location, occupation and type of assistance. Clusters were created using the K-Means method based on location and nominal value, and the Davies Bouldin Index (DBI) was used to assess quality. The findings show that six clusters with different data distributions were produced by optimal clustering with K=6 and DBI 0.971. Relevant parties can identify more effective distribution strategies with the help of these clusters, which provide insight into more structured social assistance distribution patterns. In short, the K-Means algorithm can be a useful tool for classifying social assistance data, facilitating more informed and effective decision making. This study significantly advances the domain of social assistance management and data collection.

Downloads

Download data is not yet available.

References

References

Sari Ufriani, Jasmir, and Y. Arvita, “Penerapan Algoritma Clustering K-means untuk Menentukan Prioritas Penerima Bantuan Dana Sosial PKH di Kelurahan Kampung Singkep,” J. Inform. Dan Rekayasa Komputer(JAKAKOM), vol. 3, no. 1, pp. 342–350, 2023, doi: 10.33998/jakakom.2023.3.1.726.

E. Dwiguna and A. Bahtiar, “Penerapan Data Mining Untuk Menentukan Penerima Bantuan Blt Menggunakan Metode Clustering K-Means Pada Desa Pamulihan,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1382–1388, 2024, doi: 10.36040/jati.v8i2.9029.

D. Maulana Fathul Aziz, B. Irawan, and A. Bahtiar, “Analisis Dataset Program Keluarga Harapan (Pkh) Desa Sidaharja Menggunakan Algoritma K-Means,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3370–3376, 2024, doi: 10.36040/jati.v7i6.8200.

H. Fitriyah, E. M. Safitri, N. Muna, M. Khasanah, D. A. Aprilia, and D. Nurdiansyah, “Implementasi Algoritma Clustering Dengan Modifikasi Metode Elbow Untuk Mendukung Strategi Pemerataan Bantuan Sosial Di Kabupaten Bojonegoro,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 4, no. 3, pp. 1598–1607, 2023, doi: 10.46306/lb.v4i3.453.

Edisman Rahul Gonjales Siahaan, “Implementation Of The K-Means Method In Grouping Districts And Cities In North Sumatra On Social Welfare Problems,” J. Artif. Intell. Eng. Appl., vol. 1, no. 2, pp. 168–173, 2022, doi: 10.59934/jaiea.v1i2.86.

F. Fitriani, R. Kurniawan, and T. Suprapti, “Penerapan Algoritma K-Means Clustering Untuk Identifikasi Kelayakan Penerima Bantuan Program Keluarga Harapan (Pkh) Di Desa Tambaksari Ciamis,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3363–3369, 2024, doi: 10.36040/jati.v7i6.8197.

D. Setiawan, D. Arsa, L. E. Fitri, F. Fadhila, and P. Zahardy, “Comparative Analysis of Clustering Approaches in Assessing ChatGPT User Behavior,” vol. 10, no. 2, pp. 366–379, 2024.

W. R. Rahayu, A. I. Purnamasari, and A. Bahtiar, “Improving Regional Clustering Based on Tuberculosis Cases using the K-Means Algorithm of the Cirebon City Health Office,” vol. 4, no. 2, 2025.

I. Dinda Anjani and A. Bahtiar, “Penerapan Algoritma K-Means Clustering Untuk Mengelompokkan Penerima Bantuan Sosial Tunai (Bst) Di Jawa Barat,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2743–2747, 2024, doi: 10.36040/jati.v8i3.8974.

A. Adiyanto and Y. Arie Wijaya, “Penerapan Algoritma K-Means Pada Pengelompokan Data Set Bahan Pangan Indonesia Tahun 2022-2023,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1344–1350, 2023, doi: 10.36040/jati.v7i2.6849.

Downloads

Published

2025-06-15

How to Cite

Temu Asih, Rini Astuti, Willy Prihartono, & Ryan Hamonangan. (2025). Grouping of Social Assistance Recipients Using K-Means Algorithm (Case Study: Gegunung Village Office). Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1597–1602. https://doi.org/10.59934/jaiea.v4i3.960

Issue

Section

Articles