Sentiment Analysis of GoPay Application is Improved Using Natural Language Processing Method to Optimize Services
DOI:
https://doi.org/10.59934/jaiea.v4i3.961Keywords:
Natural laguage Processing, Sentiment Analysis,User ReviewsAbstract
Penelitian ini bertujuan untuk menganalisis sentimen ulasan pengguna aplikasi Gopay menggunakan pendekatan Natural Language Processing (NLP) berbasis algoritma Naïve Bayes Multinomial. Ulasan pengguna diambil dari kumpulan data publik yang tersedia di platform Kaggle, yang berisi teks ulasan dan skor penilaian dalam bahasa Indonesia. Tahapan penelitian ini meliputi pengumpulan data, praproses data, transformasi data, pemodelan sentimen, dan evaluasi model. Pada tahap pemilihan data, hanya dua kolom yang relevan, yaitu teks ulasan dan skor penilaian, yang dipertahankan untuk memastikan analisis yang terfokus. Tahap praproses meliputi pembersihan teks, penghilangan tanda baca, tokenisasi, penghilangan kata henti, dan stemming untuk menghasilkan data yang bersih dan terstruktur. Data yang diolah kemudian diubah menjadi representasi numerik menggunakan teknik TF-IDF (Term Frequency-Inverse Document Frequency). Proses klasifikasi dilakukan menggunakan algoritma Naïve Bayes Multinomial, di mana ulasan dikategorikan menjadi tiga sentimen: positif, netral, dan negatif, berdasarkan skor penilaian pengguna. Evaluasi model dilakukan dengan menggunakan metrik akurasi, presisi, recall, dan skor F1. Hasil penelitian menunjukkan bahwa algoritma Multinomial Naïve Bayes mampu mengklasifikasikan sentimen dengan akurasi 90%, dengan kinerja terbaik pada sentimen positif. Namun, model menunjukkan kelemahan pada klasifikasi sentimen netral, dengan skor F1 yang sangat rendah, yang disebabkan oleh ketidakseimbangan jumlah data antar kategori. Penelitian ini berkontribusi dengan menghasilkan wawasan tentang persepsi pengguna terhadap aplikasi Gopay. Hasil analisis menunjukkan bahwa sebagian besar ulasan bersifat positif, mencerminkan kepuasan pengguna terhadap kemudahan dan keamanan layanan. Sementara itu, ulasan negatif menunjukkan masalah teknis dan layanan pelanggan yang memerlukan perhatian lebih lanjut. Penelitian ini merekomendasikan untuk meningkatkan kualitas layanan berdasarkan keluhan dalam ulasan negatif dan mempertahankan keunggulan fitur yang diapresiasi pengguna. Dengan demikian, hasil penelitian ini dapat digunakan untuk mendukung pengambilan keputusan strategis dalam pengembangan layanan GoPay.
Downloads
References
M. Amien, "History and Development of Natural Language Processing (NLP) Techniques in Indonesian: A Review of the History, Development of Technology, and Applications of NLP in Indonesian," no. 2007, p. 1–7, 2023, [Online]. Available on: http://arxiv.org/abs/2304.02746
M. Diki Hendriyanto, A. A. Ridha, and U. Enri, "Sentiment Analysis of Mola Application Reviews on Google Play Store Using Support Vector Machine Algorithm," J. Inf. Technol. Comput. Sci., vol. 5, no. 1, hal. 1–7, 2022.
M. Aulia and A. Hermawan, "Comparative Analysis of SVM, Naïve Bayes, and Perceptron Algorithms for Sentiment Analysis of Tokopedia Product Reviews," J. Media Inform. Budidarma, vol. 7, no. 4, hal. 1850– 1859, 2023, doi:10.30865/mib.v7i4.6839.
D. Maulana and E. Budiarto, "Security Analysis of ChatGPT Information System Using Natural Language Processing (NLP) Algorithms," J. Technol. Inform. and Komput., vol. 9 no. 1 plow. 592–604, 2023, doi:10.37012/jatik.v9I1.1678.
W. Kurnia, "Sentiment Analysis of E-Commerce Applications Based on User Reviews Using the Stochastic Gradient Descent Algorithm," J. Technol. and Sist. Inf., vol. 4, no. 1, hal. 138–143, 2023.
A. D. Adhi Putra, "Sentiment Analysis on User Reviews of Bibit and Bareksa Applications with KNN Algorithm," JATISI (Jurnal Tek. Inform. and Sist. Information), Vol. 8, No. 2, Hal. 636–646, 2021, Yogurt:
35957/National.V8E2.962.
N. P. Eki, Indrianti, and W. C. Wihandika, "Sentiment Analysis on User Reviews of Online Mandiri
Applications Using the Modified Term Frequency Scheme and Naïve Bayes Method," J. Developer. Technol. Inf. and Komput Science., vol. 5, no. 3, hal. 1039–1047, 2021.
I. Huda, "Implementation of Natural Language Processing (NLP) for Location Search Applications," J. Nas. Technol. Apply., Vol. 3 No. 2 Hull. 15 2021, doi: 10.22146/JNTT.35036.
E. Wita, "BEES: Bulletin of Electrical and Electronics Engineering Application of Natural Language Processing to Identify Ambiguous Sentences in Newspapers Applying the Shift Reduce Parsing Method ARTICLE INFORMATION," vol. 2, no. 2, p. 63–66, 2021.
N. Nurwanda, N. Suarna, and W. Prihartono, "The Application of NLP (Natural Language Processing) in the Analysis of Telegram User Sentiment on Playstore," JATI (Journal of Mhs. Tek. Inform., Vol. 8, No. 2, Hal. 1841–1846, 2024, Yogurt: 10.36040/nation.V8E2.8469.
D. T. Ksatria, Y. Yunefri, and L. L. Van FC, "Sentiment Analysis of Mypertamina Application User Reviews on Google Playstore Using K-Nearest Neighbor and Naïve Bayes," Technol. Inf., vol. 2, no. 1, p. 213–227,
, [Online]. Available on: https://journal.unilak.ac.id/index.php/Semaster/article/view/18526
D. O. Sihombing, "Implementation of Natural Language Processing (NLP) and Cosine Similarity Algorithm in Automated Essay Exam Assessment," J. Sist. Comput. and Inform., vol. 4, no. 2, hal. 396, 2022, doi:10.30865/json.v4i2.5374.
H. Irsyad and A. Taqwiym, "Analysis of User Reviews of Plant Diagnosis Applications on the Play Store Using Naïve Bayes," Bul. Ilm. Inform. Technol., vol. 1, no. 2, hal. 43–51, 2022.
V. R. Prasetyo, N. Benarkah, and V. J. Chrisintha, "Implementation of Natural Language Processing in Making Chatbots in the Information Technology Program of the University of Surabaya," Teknika, vol. 10, no. 2, hal. 114–121, 2021, to date: 10.34148/10i2.370.
N. A. Mutiara, A. Fitri, K. S. Rizwine, S. S. Vetryc, and K. Fihri, "Implementation of NLP in the Creation of Chatbot Customer Service Publisher Case Study Journal LARISMA," vol. 1, no. 1, p. 13–17, 2024.
Supriady, A. Eldita, and S. Dewinta, "APPLICATION OF NLP ALGORITHM ON SAWALA INTERACTIVE DISCUSSION PLATFORM WITH CHATBOT FOR ULBI STUDENTS D3 Informatics Engineering Study Program, University of Logistics and International Business Abstract This research focuses on applying Natural Language Processing Al," J. Tek. Inform., vol. 16, no. 2, hal. 41–45, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.