Analysis of the Application of Machine Learning Algorithm in Spam Detection System: Literature Review
DOI:
https://doi.org/10.59934/jaiea.v4i3.965Keywords:
Deteksi Spam,Machine Learning, Algoritma SVMAbstract
Spam detection is an evolving issue in line with the increasing volume of data and the evolution of spam techniques. In recent years, the application of machine learning (ML) algorithms has become an effective solution to enhance the accuracy and efficiency of spam detection systems. This study aims to analyze various machine learning algorithms applied in spam detection systems through a literature review. Several popular algorithms used in spam detection include Naive Bayes, Support Vector Machine (SVM), Neural Network, Recurrent Neural Network (RNN), and Transformer-based models. Each algorithm has its strengths and weaknesses that affect its performance in handling spam detection issues, depending on the characteristics of the data and the application requirements. Based on the data obtained, the Naive Bayes algorithm achieved 88% accuracy, 85% precision, 90% recall, and 87% F1-score. In contrast, SVM showed higher results with 93% accuracy, 92% precision, 94% recall, and 93% F1-score. Neural Network reached 96% accuracy, 95% precision, 97% recall, and 96% F1-score, while Recurrent Neural Network (RNN) achieved 95% accuracy, 94% precision, 96% recall, and 95% F1-score. Transformer-based models provided the best results with 97% accuracy, 96% precision, 98% recall, and 97% F1-score. This study adopts a literature analysis method by reviewing various articles and research that discuss the application of these algorithms in spam detection. In conclusion, the selection of the appropriate algorithm should be adjusted to the characteristics of the dataset, the complexity of the problem, and the availability of computational resources, as each algorithm has its own strengths and weaknesses in the context of spam detection.
Downloads
References
T. Tri, F. Manguma, and E. Fatra, “Analisis Performa Algoritma Klasifikasi untuk Deteksi Spam pada Email,” vol. 4, pp. 16461–16465, 2024.
F. N. Aini, “Optimisasi Algoritma Machine Learning Untuk Pengenalan Pola Dalam Gambar Medis,” J. Dunia Data, vol. 1, no. 4, pp. 1–15, 2024, [Online]. Available: http://www.portaldata.org/index.php/duniadata/article/view/71
F. R. Yudana, M. Suyanto, and A. Nasiri, “Model Klasifikasi Untuk Menentukan Kesiapan Kerja Mahasiswa Dan Kelulusan Tepat Waktu Dengan Metode Machine Learning,” IJITECH Indones. J. Inf. Technol., vol. 1, no. 1, pp. 1–12, 2023, doi: 10.37680/ijitech.v1i1.xx.
Frira Sesilia, Viktor Handrianus Pranatawijaya, and Ressa Priskila, “Machine Learning untuk Memprediksi Jumlah Penjualan, Stok dan Jumlah Tanam Hasil Pertanian Hidroponik,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 4, no. 1, pp. 222–233, 2024, doi: 10.24002/konstelasi.v4i1.9055.
F. Noer Azzahra et al., “Penerapan Metode Naive Bayes Dalam Klasifikasi Spam SMS Menggunakan Fitur Teks Untuk Mengatasi Ancaman Pada Pengguna,” J. Inf. Syst. Res., vol. 5, no. 3, p. 880, 2024, doi: 10.47065/josh.v5i3.5070.
S. F. Pane and M. S. Amrullah, “Systematic Literature Review: Analisa Sentimen Masyarakat terhadap Penerapan Peraturan ETLE,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 65–74, 2023, doi: 10.52158/jacost.v4i1.493.
J. T. Santoso, CARA MEMANIPULASI PEMBELAJARAN MESIN (Machine Learning). 2024. [Online]. Available: https://penerbit.stekom.ac.id/index.php/yayasanpat/article/view/488
C. S. de Almeida et al., “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” Rev. Bras. Linguística Apl., vol. 5, no. 1, pp. 1689–1699, 2016, [Online]. Available: https://revistas.ufrj.br/index.php/rce/article/download/1659/1508%0Ahttp://hipatiapress.com/hpjournals/index.php/qre/article/view/1348%5Cnhttp://www.tandfonline.com/doi/abs/10.1080/09500799708666915%5Cnhttps://mckinseyonsociety.com/downloads/reports/Educa
D. Jalali Wal Ikram and S. Fachri Pane, “Deteksi Spam Bot Pada Komentar Youtube: Tinjauan Literatur Sistematis Bot Spam Detection on Youtube Comments: A Systematic Literature Review,” vol. 15, no. 2, pp. 103–123, 2023, [Online]. Available: https://www.doi.org/10.22303/csrid.15.2.2022.103-123
H. Dhery, A. Assyam, and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.
M. F. Anggarda, I. Kustiawan, D. R. Nurjanah, and N. F. A. Hakim, “Pengembangan Sistem Prediksi Waktu Penyiraman Optimal pada Perkebunan: Pendekatan Machine Learning untuk Peningkatan Produktivitas Pertanian,” J. Budid. Pertan., vol. 19, no. 2, pp. 124–136, 2023, doi: 10.30598/jbdp.2023.19.2.124.
H. Basri, “Implementasi Sistem Irigasi Cerdas Berbasis IoT dan Machine Learning pada Pembibitan Pala di Papua Barat,” J. Ilm. Edutic Pendidik. dan Inform., vol. 8, no. 2, pp. 89–96, 2022, doi: 10.21107/edutic.v8i2.12393.
A. Satria, R. M. Badri, and I. Safitri, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digit. Transform. Technol., vol. 3, no. 2, pp. 389–398, 2023, doi: 10.47709/digitech.v3i2.2852.
A. F. Mahmud and S. Wirawan, “Sistemasi: Jurnal Sistem Informasi Deteksi Phishing Website menggunakan Machine Learning Metode Klasifikasi Phishing Website Detection using Machine Learning Classification Method,” vol. 13, no. 4, pp. 2540–9719, 2024, [Online]. Available: http://sistemasi.ftik.unisi.ac.id
C. M. Bachri and W. Gunawan, “Deteksi Email Spam menggunakan Algoritma Convolutional Neural Network (CNN),” Edukasi dan Penelit. Inform., vol. 10, no. 1, pp. 88–94, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.