Application of K-Means for Clustering Analysis of Moring Sales in Stores Meowring

Authors

  • Pramugya Jhabat Sakti STMIK IKMI Cirebon
  • Ade Irma Purnamasari STMIK IKMI Cirebon
  • Agus Bahtiar STMIK IKMI Cirebon
  • Edi Tohidi STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i3.966

Keywords:

K-Means Clustering, Product Segmentation, Knowledge Discovery in Database, Davies-Bouldin Index, Inventory Management

Abstract

The complexity of stock management and marketing strategy at Toko Meowring requires a systematic analytical approach. This study implements the K-Means algorithm with a Knowledge Discovery in Databases (KDD) approach to optimize product segmentation. The analysis was conducted on 246 sales data over a year, considering product type, spiciness level, and sales volume. Evaluation using Davies-Bouldin Index (DBI) resulted in 7 optimal clusters with a DBI value of 0.402. The formed clusters identified bestseller product groups dominated by original flavors, low-demand products, moderate popularity products, stable sales products, and unique products with limited demand. This clustering enables optimization of inventory management, development of targeted promotional strategies, and improvement of product layout. The results validate the effectiveness of the K-Means algorithm in enhancing product segmentation accuracy for strategic decision-making.

Downloads

Download data is not yet available.

References

Abdalla, H. B. (2022). A brief survey on big data: technologies, terminologies and data-intensive applications. Journal of Big Data, 9(1), 1–36. https://doi.org/10.1186/S40537-022-00659-3/TABLES/5

Awaliah, L., Rahaningsih, N., & Dana, R. D. (2024). Implementasi Algoritma K-Means Dalam Analisis Cluster Korban Kekerasan Di Provinsi Jawa Barat. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 188–195. https://doi.org/10.36040/jati.v8i1.8332

Dilawati, H., Widianto, H., & Kuswiadji, A. (2024). Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering Di Rumah Sakit Widodo Ngawi. 5(2), 139–147.

Ezugwu, A. E., Shukla, A. K., Agbaje, M. B., Oyelade, O. N., José-García, A., & Agushaka, J. O. (2021). Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature. Neural Computing and Applications, 33(11), 6247–6306. https://doi.org/10.1007/S00521-020-05395-4/METRICS

Febrianty, E., Awalina, L., & Rahayu, W. I. (2023). Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail. Jurnal Teknologi Dan Informasi, 13(2), 122–137. https://doi.org/10.34010/JATI.V13I2.10090

Fitri, E. M., Suryono, R. R., & Wantoro, A. (2023). KLASTERISASI DATA PENJUALAN BERDASARKAN WILAYAH MENGGUNAKAN METODE K-MEANS PADA PT XYZ. Jurnal Komputasi, 11(2), 157–168. https://doi.org/10.23960/KOMPUTASI.V11I2.12582

Gupta, M. K., & Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology (Singapore), 12(4), 1243–1257. https://doi.org/10.1007/S41870-020-00427-7/METRICS

Gutierrez-Osorio, C., & Pedraza, C. (2020). Modern data sources and techniques for analysis and forecast of road accidents: A review. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 432–446. https://doi.org/10.1016/J.JTTE.2020.05.002

Hartati, T., Nurdiawan, O., Wiyandi, E., & Cirebon, S. I. (2021). Analisis dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari. Jurnal Sains Teknologi Transportasi Maritim, 3(1), 1–7. https://doi.org/10.51578/J.SITEKTRANSMAR.V3I1.31

Ikotun, A. M., Almutari, M. S., & Ezugwu, A. E. (2021). K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data Clustering Problems: Recent Advances and Future Directions. Applied Sciences 2021, Vol. 11, Page 11246, 11(23), 11246. https://doi.org/10.3390/APP112311246

Downloads

Published

2025-06-15

How to Cite

Jhabat Sakti, P., Purnamasari, A. I. ., Bahtiar, A. ., & Tohidi, E. (2025). Application of K-Means for Clustering Analysis of Moring Sales in Stores Meowring. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1622–1629. https://doi.org/10.59934/jaiea.v4i3.966

Issue

Section

Articles