Eligibility Analysis of Non-Cash Food Assistance Recipients in Rajadesa Village Using the K-Means Clustering Method

Authors

  • Ati Sumiati STMIK IKMI Cirebon
  • Rini Astuti STMIK LIKMI Bandung
  • Willy Prihartono STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i3.980

Keywords:

Non-Cash Food Assistance, K-Means Clustering, Recipient Eligibility, Knowledge Discovery in Database, Davies Bouldin Index

Abstract

The distribution of Non-Cash Food Assistance (BPNT) in Rajadesa Village often encounters challenges in accurately determining recipient eligibility. The selection process lacks objectivity due to limited data and suboptimal verification, leading to uneven distribution. To address this issue, the study employs the K-Means Clustering algorithm to enhance the efficiency of BPNT recipient selection. The assessment is based on attributes such as ID number (NIK), name, address, occupation, and the amount of assistance received.The methodology adopts the Knowledge Discovery in Databases (KDD) approach, involving stages such as data selection, preprocessing, transformation, data mining, and evaluation. Data processing is carried out using RapidMiner version 10.5. The clustering results are evaluated using the Davies Bouldin Index (DBI), yielding the best model with three clusters and a DBI value of 0.346.

This approach successfully identifies recipient groups more accurately, enabling a more targeted distribution of food assistance. Consequently, the study provides significant contributions to ensuring the eligibility of BPNT recipients in Rajadesa Village through the application of K-Means Clustering-based analytical technology.

Downloads

Download data is not yet available.

References

References

M. I. St Nur Rahmah, Muliani.S, Andi Nilwana, “Jurnal Ilmiah Pemerintahan,” vol. 12, no. Idm, pp. 27–38, 2024.

T. Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, Tommy Hastomo, Setiana Sri Wahyuni Sitepu, “済無No Title No Title No Title,” J. GEEJ, vol. 7, no. 2, pp. 309–316, 2020.

S. A. Ajun, S. Canon, B. R. Payu, and U. N. Gorontalo, “Analisis ketepatan sasaran penerima bantuan sosial provinsi gorontalo,” vol. 7, pp. 8–19, 2024, doi: 10.37600/ekbi.v7i1.1319.

F. Fitriani, R. Kurniawan, and T. Suprapti, “Penerapan Algoritma K-Means Clustering Untuk Identifikasi Kelayakan Penerima Bantuan Program Keluarga Harapan (Pkh) Di Desa Tambaksari Ciamis,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3363–3369, 2024, doi: 10.36040/jati.v7i6.8197.

C. A. Rahayu, “Prediksi Penderita Diabetes Menggunakan Metode Naive Bayes,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, 2023, doi: 10.23960/jitet.v11i3.3055.

K. Kameshwaran and K. Malarvizhi, “Survey on Clustering Techniques in Data Mining,” vol. 5, no. 2, pp. 2272–2276, 2014.

S. G. Pratama, A. Mahudi, and S. Achmadi, “Klasifikasi Penentuan Penerima Bantuan Pangan Non Tunai Menggunakan Metode K-Means Clustering,” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 1, pp. 341–348, 2020, doi: 10.36040/jati.v4i1.2360.

F. Juliawati, R. Buaton, R. Saragih, and S. Kaputama, “Pengelompokan Data Mining Penerimaan Bantuan Pangan Non Tunai (BPNT) Menggunakan Metode Clustering (Studi Kasus : Kantor Desa Payabakung Hamparan Perak),” J. Comput. Sci. Inf. Technol. E-ISSN, vol. 3, no. 2, p. 69, 2023.

A. Singh, S. Mittal, P. Malhotra, and Y. Srivastava, Clustering Evaluation by Davies-Bouldin Index(DBI) in Cereal data using K-Means. 2020. doi: 10.1109/ICCMC48092.2020.ICCMC-00057.

D. A. Tarigan, “Optimization of the K-Means Clustering Algorithm Using Davies Bouldin Index in Iris Data Classification,” Media Online), vol. 4, no. 1, pp. 545–552, 2023, doi: 10.30865/klik.v4i1.964.

A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, pp. 20–28, 2023, doi: 10.58602/jaiti.v1i1.22.

D. A. Setiady and H. Leong, “Implementation of K-Means Algorithm Elbow Method and Silhouette Coefficient for Rainfall Classification,” Proxies J. Inform., vol. 4, no. 1, pp. 18–25, 2024, doi: 10.24167/proxies.v4i1.12433.

Downloads

Published

2025-06-15

How to Cite

Ati Sumiati, Rini Astuti, & Willy Prihartono. (2025). Eligibility Analysis of Non-Cash Food Assistance Recipients in Rajadesa Village Using the K-Means Clustering Method. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1662–1666. https://doi.org/10.59934/jaiea.v4i3.980

Issue

Section

Articles