Palm Fruit Ripeness Detection System Using Convolutional Neural Network (CNN) Algorithm
DOI:
https://doi.org/10.59934/jaiea.v4i3.989Keywords:
Palm, Accuracy, Classification, CNN, MobileNetV2Abstract
Oil Palm Fruit is a valuable natural resource crop in the plantation sector in Indonesia, with promising future growth prospects. To produce the best oil palm fruit, good sorting is needed. With good oil palm fruit, adequate technology is needed to assist in sorting oil palm fruit. Therefore, this study aims to help companies sort oil palm fruit bunches. In this study, CNN was used with the MobileNetV2 algorithm and the training accuracy results reached a peak of 98.20%, while the validation accuracy remained high at 95.00%. This proves that this model is very good and very feasible for further research. This method has proven to be the best choice for achieving high accuracy and low loss, but also minimizing errors in prediction.
Downloads
References
Rosmegawati, “Peran Aspek Tehnologi Pertanian Kelapa Sawit Untuk Meningkatkan Produktivitas Produksi Kelapa Sawit,” 2021, JURNAL AGRISIA-Vol.13 No.2 Tahun 2302-0091, ISSN : 2302-0091, vol. 13, no. 2, pp. 1–23, 2016.
A. Alatas, “Trend Produksi dan Ekspor Minyak Sawit (CPO) Indonesia,” AGRARIS: Journal of Agribusiness and Rural Development Research, vol. 1, no. 2, pp. 114–124, 2015, doi: 10.18196/agr.1215.
Sulardi, E-book Buku Ajar Budidaya Kelapa Sawit, Pertama., no. 1 Kali. Medan: PT Dewangga Energi Internasional Anggota IKAPI (403/JBA/2021), 2022. [Online]. Available: https://www.researchgate.net/publication/358981459_E-book_Buku_Ajar_Budidaya_Kelapa_Sawit
Kementrian Koordinator Bidang Perekonomian Republik Indonesia, “Industri Kelapa Sawit Indonesia: Menjaga Keseimbangan Aspek Sosial, Ekonomi, dan Lingkungan - Kementerian Koordinator Bidang Perekonomian Republik Indonesia,” Ekon.Go.Id, 2021.
A. chandra Saputra and E. D. Oktaviyani, “Rancang Bangun Sistem Deteksi Kematangan Buah Kelapa Sawit Berdasarkan Deteksi Warna Menggunakan Algoritma K-Nn,” Jurnal Teknologi Informasi: Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika, vol. 7, no. 2, pp. 222–229, 2023, doi: 10.47111/jti.v7i2.9232.
R. Kurniawan and Nurahman, “Klasifikasi Tingkat Kematangan Buah Sawit Berdasarkan Ekstraksi Fitur RGB dan GLCM Menggunakan Algoritma K-NN,” Jurnal Ilmiah Komputasi, vol. 4, no. 1, pp. 88–100, 2023, doi: 10.32409.
N. Sabri, Z. Ibrahim, S. Syahlan, N. Jamil, and N. N. A. Mangshor, “Palm Oil Fresh Fruit Bunch Ripeness Grading Udentification using Color Features,” Journal of Fundamental and Applied Sciences, vol. 9, no. 4S, p. 17, 2017, doi: 10.4314/jfas.v9i4s.3.
M. L. Pura, “PENERAPAN RADIAL BASIS FUNCTION (RBF) UNTUK MENENTUKAN TINGKAT KEMATANGAN BUAH TOMAT MENGGUNAKAN MODEL WARNA HSV,” UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU, 2018. [Online]. Available: https://repository.uin-suska.ac.id/16494/
Harsawardana et al., “AI-Based Ripeness Grading for Oil Palm Fresh Fruit Bunch in Smart Crane Grabber,” IOP Conf Ser Earth Environ Sci, vol. 426, no. 1, 2020, doi: 10.1088/1755-1315/426/1/012147.
A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017, [Online]. Available: http://arxiv.org/abs/1704.04861
MM. Dr. Budi Raharjo, S.Kom., M.Kom., Deep Learning dengan Python, Pertama. Semarang: YAYASAN PRIMA AGUS TEKNIK, 2022. [Online]. Available: https://digilib.stekom.ac.id/assets/dokumen/ebook/feb_eab5a7c1f295129ba69a76fee4dff22266879314_1643796893.pdf
Z. Ibrahim, N. Sabri, and D. Isa, “Palm oil fresh fruit bunch ripeness grading recognition using convolutional neural network,” Journal of Telecommunication, Electronic and Computer Engineering, vol. 10, no. 3–2, pp. 109–113, 2018, [Online]. Available: https://jtec.utem.edu.my/jtec/article/view/4720
O. M. Bensaeed, A. M. Shariff, A. B. Mahmud, H. Shafri, and M. Alfatni, “Oil palm fruit grading using a hyperspectral device and machine learning algorithm,” IOP Conf Ser Earth Environ Sci, vol. 20, no. 1, 2014, doi: 10.1088/1755-1315/20/1/012017.
Suharjito, Elwirehardja, G. Natanael, Prayoga, and J. Sebastian, “Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches,” Comput Electron Agric, vol. 188, 2021, doi: 10.1016/j.compag.2021.106359.
S. Ratna, “Pengolahan Citra Digital Dan Histogram Dengan Phyton Dan Text Editor Phycharm,” Technologia: Jurnal Ilmiah, vol. 11, no. 3, p. 181, 2020, doi: 10.31602/tji.v11i3.3294.
A. E. Wijaya, W. Swastika, and O. H. Kelana, “Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray,” Sainsbertek Jurnal Ilmiah Sains & Teknologi, vol. 2, no. 1, pp. 10–15, 2021, doi: 10.33479/sb.v2i1.125.
Qorry Aina Fitroh and Shofwatul ’Uyun, “Deep Transfer Learning untuk Meningkatkan Akurasi Klasifikasi pada Citra Dermoskopi Kanker Kulit,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 12, no. 2, pp. 78–84, 2023, doi: 10.22146/jnteti.v12i2.6502.
M. Ali, “Pengantar Fungsi Aktivasi di Jaringan Syaraf Tiruan,” www.datacamp.com. [Online]. Available: https://www.datacamp.com/tutorial/introduction-to-activation-functions-in-neural-networks
H. Asril, “KLASIFIKASI DOKUMEN TUGAS AKHIR BERBASIS TEXT MINING MENGGUNAKAN METODE NA¨IVE BAYES CLASSIFIER DAN K-NEAREST NEIGHBOR,” UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU, 2019. [Online]. Available: https://repository.uin-suska.ac.id/21473/2/Hamdani Asril %28kecuali bab 4%29.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Artificial Intelligence and Engineering Applications (JAIEA)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.