Prediction Model Optimization on Odd-Even License Plates Using YoloV8 Algorithm

Authors

  • Denar Ahmaron STMIK IKMI Cirebon
  • Rudi Kurniwan STMIK IKMI Cirebon
  • Yudhistira Arie Wijaya STMIK IKMI Cirebon
  • Rahmat Hidayat STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i3.997

Keywords:

YOLOv8, License Plate Detection, Odd-Even, Deep Learning, Object Detection

Abstract

Traffic congestion in urban areas encourages the implementation of vehicle restriction policies based on license plate numbers, such as the odd-even system. Therefore, to support this policy, an accurate vehicle license plate detection system is needed and can work in real-time. The main challenge faced is how to develop an accurate and efficient detection model in recognizing license plates in various environmental conditions. The research method used is Knowledge Discovery in Databases (KDD) with five main stages, namely: data selection, preprocessing, transformation, data mining, and evaluation. This research method aims to develop and evaluate a vehicle license plate detection model based on the YOLOv8 algorithm, focusing on the classification of license plates into the "Odd" and "Even" categories. However, the dataset used was only obtained from the Roboflow platform and primary data in the parking environment, which was then processed through the cropping, resizing, and labeling stages using a format that was in accordance with YOLOv8's needs. The model was trained for 100 epoches with performance evaluation using precision, recall, F1-score, and Average Precision (mAP) metrics. The training results showed that the model achieved a precision of 0.879, a recall of 0.888, an mAP50 of 0.954, and an mAP50–95 of 0.830, with a fitness value of 0.843. In addition, the image resolution of 640x480 pixels results in the highest detection accuracy, which is 92% for odd plates and 85% for even plates. Tests were carried out on both images and videos, showing that the model was able to work in real-time with stable results. Based on these results, it can be concluded that YOLOv8 is effectively used to detect odd-even license plates with high accuracy. This research contributes to the development of intelligent systems based on computer vision to support efficient traffic management, especially in the implementation of odd-even policies in urban areas.

Downloads

Download data is not yet available.

References

N. M. Farhan and B. Setiaji, “Pengembangan Sistem Deteksi Kecelakaan di Jalan Raya Menggunakan Algoritma YOLOv8 dan Notifikasi Otomatis Melalui Telegram,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2023, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135

F. F. Sanubari and R. D. Puriyanto, “Deteksi Bola dan Gawang dengan Metode YOLO Menggunakan Kamera Omnidirectional pada Robot KRSBI-B,” Bul. Ilm. Sarj. Tek. …, 2022, [Online]. Available: http://journal2.uad.ac.id/index.php/biste/article/view/6712

K. Anwariyah, “Deteksi Objek Nomor Kendaraan Pada Citra Kendaraan Bermotor,” JTIM J. Teknol. Inf. dan …, 2020, [Online]. Available: https://www.journal.sekawan-org.id/index.php/jtim/article/view/65

H. Diwanti, I. S. Sumaryo, and C. Setianingsih, “Real time smart CCTV untuk mendeteksi plat nomor kendaraan menggunakan optical character recognition real time smart CCTV to detect vehicle license plate using optical character recognition,” e-Proceeding Eng., vol. 6, no. 2, pp. 3045–3052, 2019.

M. Zakiyamani, T. I. Cahyani, D. Riana, and S. Hardianti, “Deteksi Dan Pengenalan Plat Karakter Nomor Kendaraan Menggunakan OpenCV Dan Deep Learning Berbasis Python,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 56–64, 2022, doi: 10.31539/intecoms.v5i1.3403.

M. Jonathan, M. T. Hafidz, N. A. Apriyanti, and ..., “MENDETEKSI PLAT NOMOR KENDARAAN DENGAN METODE YOLO (You Only Look Once) DAN SINGLE SHOT DETECTOR (SSD).,” AI dan SPK J. …, 2023, [Online]. Available: http://jurnalmahasiswa.com/index.php/aidanspk/article/view/320

M. R. Rais, F. Utaminingrum, and H. Fitriyah, “Sistem Pengenalan Plat Nomor Kendaraan untuk Akses Perumahan menggunakan YOLOv5 dan Pytesseract berbasis Jetson Nano,” … Teknol. Inf. dan Ilmu …, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12282

K. Ibnutama and M. G. Suryanata, “Ekstraksi Karakter Citra Menggunakan Optical Character Recognition Untuk Pencetakan Nomor Kendaraan Pada Struk Parkir,” J. Media …, 2020, [Online]. Available: http://www.ejurnal.stmik-budidarma.ac.id/index.php/mib/article/view/2432

R. Dwiyanto, D. W. Widodo, and ..., “Implementasi Metode You Only Look Once (YOLOv5) Untuk Klasifikasi Kendaraan Pada CCTV Kabupaten Tulungagung,” Pros. SEMNAS …, 2022, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/2669

K. Ibnutama, Z. Panjaitan, and ..., “Modifikasi Metode Template Matching pada OCR Untuk Meningkatkan Akurasi Deteksi Plat Nomor Kendaraan,” J. Teknol. Sist. …, 2019, [Online]. Available: http://ojs.trigunadharma.ac.id/index.php/jsk/article/view/121

Downloads

Published

2025-06-15

How to Cite

Ahmaron, D., Rudi Kurniwan, Yudhistira Arie Wijaya, & Rahmat Hidayat. (2025). Prediction Model Optimization on Odd-Even License Plates Using YoloV8 Algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1712–1719. https://doi.org/10.59934/jaiea.v4i3.997

Issue

Section

Articles