Utilization of YoloV8 Algorithm for in-Vehicle Video-Based Driver Monitoring System

Authors

  • Muhammad Rajendra Aria Satya STMIK IKMI Cirebon
  • Odi Nurdiawan STMIK IKMI Cirebon
  • Fadhil M. Basysyar STMIK IKMI Cirebon
  • Rahmat Hidayat STMIK IKMI Cirebon

DOI:

https://doi.org/10.59934/jaiea.v4i3.998

Keywords:

YOLOv8, Driver Monitoring, Behavior Detection, Real-Time, Driving Safety

Abstract

Driving safety is a critical factor in reducing the risk of traffic accidents, which are often caused by unsafe driver behavior such as drowsiness, phone usage, or neglecting to wear seat belts. To address this, a real-time driver monitoring system is needed to detect and identify risky behaviors using the YOLOv8 algorithm. This study utilizes a secondary dataset titled “DMS Driver Monitoring System” from Kaggle, comprising 9,440 images of various driver behaviors. The dataset underwent preprocessing, including resizing 640x640 pixels and data augmentation to increase image diversity. The YOLOv8 model was trained for 100 epochs with a data split of 70% training, 20% validation, and 10% testing. Performance was evaluated using precision, recall, F1-score, and mean Average Precision (mAP). Results showed that the model achieved 89.6% precision, 87.2% recall, 88.0% F1-score, and 92.0% mAP50. The mAP50–95 score of 69.1% indicates room for improvement in more complex detection scenarios. Real-time video testing revealed the model could detect open eyes with 85% confidence and seat belt use with 35% confidence. The study concludes that YOLOv8 is effective for standard behavior detection but requires further optimization to handle varying lighting and camera angles for broader real-world deployment.

Downloads

Download data is not yet available.

References

Titie Yustisia Lestari, Ridwan Tahir, and Irzha Friskanov. S, “Penyuluhan Hukum Tentang Karakter Siswa Yang Tertib Berlalu Lintas Di Madrasah Aliyah Ddi Lonja,” J. Abdi Masy., vol. 7, no. 1, pp. 37–46, 2023, doi: 10.30737/jaim.v7i1.4951.

C. Sanjaya, R. Setiawan, and N. F. Hikmah, “Sistem Pemantauan Kantuk Menggunakan Instrumentasi Elektrokardiografi dan Visual Haar Classifier pada Pengemudi,” J. Tek. ITS, vol. 9, no. 1, 2020, doi: 10.12962/j23373539.v9i1.45622.

C. K. U Nggiku and A. Rabi, “Deteksi Kantuk Pada Pengemudi Mobil Menggunakan Eye Aspect Ratio Dengan Metode Facial Landmark,” Semin. Nas. Fortei Reg., vol. 7, pp. 72–78, 2022, [Online]. Available: https://binaryupdates.com/

E. U. Armin, A. Purnama Edra, F. I. Alifin, I. Sadidan, I. P. Sary, and U. Latifa, “Performa Model YOLOv8 untuk Deteksi Kondisi Mengantuk pada pengendara mobil,” BRAHMANA J. Penerapan Kecerdasan Buatan, vol. 5, no. 1, pp. 67–76, 2023, [Online]. Available: https://doi.org/10.30645/brahmana.v5i1.279

T. Yuniati and M. F. Sidiq, “Literature Review : Legalisasi Dokumen Elektronik Menggunakan Tanda,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 6, pp. 1058–1069, 2020, [Online]. Available: https://doaj.org/article/159b35f326d7453eb754b389eb4214c7%0Ahttps://repository.ittelkom-pwt.ac.id/5976/%0Ahttps://garuda.kemdikbud.go.id/documents/detail/1980051

E. Lety Istikhomah Puspita Sari, I. Ketut Agung Enriko, J. Gegerkalong Hilir No, J. DI Panjaitan No, and J. Tengah, “Sistem Peringatan Tersemat untuk Pengemudi Mengantuk Embedded Alert System for Drowsy Drivers,” J. Ris. Rekayasa Elektro, vol. 5, no. 1, 2023, [Online]. Available: http://jurnalnasional.ump.ac.id/index.php/JRRE

C. Kurniawan Umbu Nggiku, A. Rabi, and S. Subairi, “Deteksi Kantuk Untuk Keamanan Berkendara Berbasis Pengolahan Citra,” J. JEETech, vol. 4, no. 1, pp. 48–56, 2023, doi: 10.32492/jeetech.v4i1.4107.

N. Nuryani, K. Nisak, and A. Dwijo Sutomo, “Pengembangan Sistem Deteksi Kantuk Menggunakan Pengklasifikasi Random Forest pada Sinyal Elektrokardiogram (Development of Drowsiness Detection System Using Random Forest Classifier on Electrocardiogram Signals),” J. Nas. Tek. Elektro dan Teknol. Inf. |, vol. 10, no. 3, pp. 265–271, 2021.

K. Rohman and T. B. Sasongko, “FAST DETECTION OF SEATBELT DRIVER BASED ON IMAGE CAPTURING,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 9, no. 3, pp. 473–480, Jun. 2023, doi: 10.33330/jurteksi.v9i3.2276.

S. N. Himawan, R. Sohiburroyan, N. B. Nugraha, J. Teknik Informatika, and P. Negeri Indramayu, “Deteksi Kantuk Pengemudi Menggunakan Deep Learning,” Semin. Nas. Ind. dan Teknol. (SNIT), Politek. Negeri Bengkalis, no. November, pp. 1–8, 2022.

Downloads

Published

2025-06-15

How to Cite

Muhammad Rajendra Aria Satya, Odi Nurdiawan, Fadhil M. Basysyar, & Rahmat Hidayat. (2025). Utilization of YoloV8 Algorithm for in-Vehicle Video-Based Driver Monitoring System. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1720–1727. https://doi.org/10.59934/jaiea.v4i3.998

Issue

Section

Articles