Clustering Vaksinasi Penyakit Mulut dan Kuku Di Provinsi Riau Menggunakan Algoritma K-Medoids

Riska Yuliana¹, Alwis Nazir², Reski Mai Candra³, Suwanto Sanjaya⁴, Fadhilah Syafria⁵

1234 Program Studi Teknik Informatika, Universitas Islam Negeri Sultan Syarif Kasim Riau, Jl. HR.

Soebrantas No.Km. 15, RW.15, Simpang Baru, Pekanbaru, Indonesia

11950125206@students.uin-suska.ac.id

Abstrak. Foot and Mouth Disease (FMD) atau biasa pula disebut penyakit mulut dan kuku (PMK) merupakan penyakit infeksi akut yang menularkan ke hewan lain karena disebabkan oleh virus yang masuk dalam genus Apthovirus dan famili Picornaviridae. PMK perlu ditangani karena menyebabkan kerugian finansial terutama disebabkan oleh penurunan produksi hewan ternak seperti susu maupun daging, produktivitas tenaga kerja serta keterbatasan pangan. Salah satu penanganan dan pengendalian PMK pada hewan ternak sapi yaitu melakukan program vaksinasi. Penelitian ini menggunakan data dari Dinas Peternakan dan Kesehatan, Provinsi Riau. Penelitian ini menggunakan teknik data mining dalam pengolahan datanya menggunakan metode k-medoids clustering. Proses K-Medoids merupakan proses agregasi yang membagi data menjadi beberapa kelompok, dan hasil dari proses clustering ini tidak bergantung pada urutan record yang dimasukkan. maka metode ini juga dapat mengatasi kelemahan dari k-means. Metode k-medoids dapat diterapkan pada data vaksinasi penyakit mulut dan kuku di Provinsi Riau, dan dapat diidentifikasi kelompok kekebalan hewan berdasarkan data tersebut. . Hasil cluster terbaik setelah dilakukan pengujian yaitu 2 cluster. Cluster terendah berada pada cluster 1 sebanyak 21894 ekor dan cluster 2 sebanyak 48042 ekor. Dimana dalam proses pengujian dilakukan menggunakan Davies Bouldien Index (DBI) mendapatkan nilai -0.482. Diharapkan penelitian ini dapat memberikan perhatian lebih untuk vaksinasi terhadap PMK karena kekebalan hewan yang masih rendah sehingga memudahkan terinfeksinya PMK.

Kata kunci: Data Mining, K-Medoids Clustering, Penyakit Mulut dan Kuku

Abstract. Foot and Mouth Disease (FMD) or commonly called mouth and hoof disease (PMK) is an acute infectious disease that transmits to other animals because it is caused by a virus that is included in the genus Apthovirus and the family Picornaviridae. FMD needs to be addressed because it causes financial losses, mainly caused by decreased production of livestock such as milk and meat, labor productivity and food limitations. One of the handling and control of FMD in cattle is to carry out a vaccination program. This study used data from the Riau Provincial Livestock and Health Office. This research uses data mining techniques in data processing using the k-medoids clustering method. The K-Medoids process is an aggregation process that divides data into groups, and the results of this clustering process do not depend on the order in which the records are entered. Then this method can also overcome the disadvantages of K-means. The K-Medoids method can be applied to oral disease vaccination data in Riau Province, and animal immune groups can be identified based on these data. The best cluster results after testing are 2 clusters. The lowest cluster is in cluster 1 with 21894 individuals and cluster 2 with 48042 individuals. Where in the testing process was carried out using the Davies Bouldien Index (DBI) to get a value of -0.482. It is hoped that this study can pay more attention to vaccination against FMD because low animal immunity facilitates FMD infection.

Keywords: Data Mining, K-Medoids Clustering, Mouth and Nail Disease

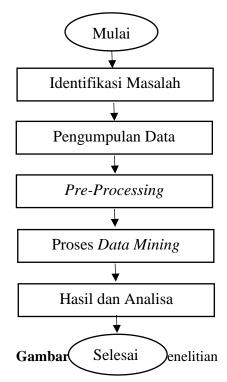
PENDAHULUAN

Foot and Mouth Disease (FMD) atau biasa pula disebut penyakit mulut dan kuku (PMK) merupakan penyakit infeksi akut yang menularkan ke hewan lain karena disebabkan oleh virus yang masuk dalam genus Apthovirus dan famili Picornaviridae.[1] PMK pertama kali ditemukan din Indonesia tahun 1887 di Malang. Kemudian dinyatakan negara bebas PMK oleh OIE tahun 1990. Namun, pertengahan April 2022 PMK Kembali menyebar luas, menginfeksi hewan peliharaan di beberapa wilayah di Pulau Jawa dan Sumatera. Menurut Kementerian Pertanian (Kementan) RI per 17 Mei 2022, sebanyak 15 provinsi, 52 kabupaten/kota, dan 13.965 ternak telah terjangkit penyakit mulut dan kuku. Penyebaran penyakit mulut dan kuku di wilayah tersebut sangat cepat dan

angka kesakitannya tinggi, hampir 100% sehingga menjadi ancaman serius bagi kelestarian ternak di Indonesia.[2] Wabah virus ini sangat menular dan mempengaruhi semua jenis hewan dengan kuku belah atau genap (cloven-hoofed) seperti hewan sapi,kambing,domba,maupun jenis hewan liar lainnya. Penyebaran wabah tersebut sangat memprihatinkan para peternak, salah satunya peternak sapi.[3] Tanda-tanda klinis hewan yang terinfeksi PMK yaitu air liur yang sangat berlebihan, demam, dan ketimpangan dengan lepuh dan erosi pada mulut, kaki, dan puting susu. Penularan PMK melalui airbone,kontak langsung maupun tidak langsung dengan hewan yang terinfeksi,peralatan kendang,transportasi,maupun pakan. [4]

Dampak yang mungkin muncul yaitu ancaman terhadap peluang terkenanya penyakit mulut dan kuku dapat secara langsung maupun tidak langsung karena PMK bersifat menular sehingga sulit untuk memenuhi target tingkat pertumbuhan ternak yang terkait dengan wabah penyakit mulut dan kuku. Pada saat yang sama, kerugian finansial terutama disebabkan oleh penurunan produksi ternak seperti daging dan susu serta penurunan produktivitas tenaga kerja. maupun keterbatasan pangan.[5] Penanganan dan pengendalian PMK pada ternak sapi dilakukan dengan cara karantina serta pengobatan pada sapi yang sakit. Melakukan tindakan biosekuriti di dalam peternakan, melakukan program vaksinasi dan pengawasan lalu lintas ternak. [6] Vaksinasi adalah proses pemberian vaksin kedalam tubuh untuk membangun sistem kekebalan tubuh. Dalam pelaksanaan vaksinasi PMK di Provinsi Riau ditargetkan dapat memvaksinasi 7.400 hewan peliharaan hingga Juli 2022. Vaksinasi hanya dapat dilakukan pada hewan ternak sapi yang sehat serta pada sapi pedet atau sapi yang berumur mulai dari 2 minggu yang berguna untuk menginduksi kekebalan sapi, atau kekebalan terhadap virus penyakit mulut dan kuku (PMK).

Pada saat ini, Dinas Peternakan dan Kesehatan Hewan Provinsi Riau terdapat permasalahan dalam mengelompokkan data vaksinasi PMK khususnya sapi di Provinsi Riau. Disebabkan oleh data yang sangat banyak, sehingga kesulitan dalam mengelompokkan data tersebut. Mengelompokkan data vaksinasi PMK baik vaksin 1 maupun vaksin 2 untuk mengetahui kekebalan hewan ternak sapi sehingga memaksimalkan program vaksinasi terhadap hewan ternak sapi. Berdasarkan permasalahan tersebut, salah satu metode dan algoritma data mining dapat diterapkan, yaitu *clustering* (pengelompokkan).


Dalam *clustering*, beberapa data dikelompokkan bersama. Tujuan dari pengelompokan ini adalah untuk menunjukkan pola yang mirip dalam tipe cluster yang serupa. Sebagai hasil dari proses ini, dibuat pengelompokan yang menyerupai bentuk grup. yang bertujuan untuk mengenali perbedaan antar kelas. Dimana yang ingin dilakukan adalah pengelompokkan tingkat kekebalan pada sapi. Terdapat beberapa teknik dalam pengelompokkan klasterisasi diantaranya *k-means,k-medoids*,dan lainnya. Berdasarkan penelitian sebelumnya tentang pengelompokkan wilayah sebaran cacat pada anak, disimpulkan bahwa algoritma *k-medoids* lebih baik dalam mengelompokkan dibandingkan dengan algoritma *k-means*. Karena mampu mengatasi kelemahan pada algoritma *k-means* yang sensitif terhadap *noise* dan *outlier*, dimana objek dengan nilai yang besar yang memungkinkan menyimpang dari distribusi data. serta *k-medoids* bekerja lebih baik dalam dataset yang cukup besar.[7] Penggunaan Algoritma ini dilakukan karena atribut yang digunakan berisi jenis kelamin, rumpun, umur, dan vaksinasi dan dataset yang cukup besar. Dari paparan diatas mendorong penulis untuk melakukan sebuah penelitian yang berjudul "Clustering Vaksinasi Penyakit Mulut dan Kuku di Provinsi Riau Menggunakan Algoritma K-Medoids"

Penulis memperoleh data dari Dinas Peternakan dan Kesehatan Hewan Provinsi Riau. Tujuan dari penelitian ini adalah untuk mengelompokkan data vaksinasi PMK ternak sapi di Provinsi Riau. Salah satu metode yang digunakan untuk mengelompokkan kekebalan hewan ternak sapi tersebut adalah menggunakan metode *k-medoids clusteirng*. Hasil penelitian ini juga diharapkan dapat membantu meningkatkan program vaksinasi PMK dan pengendalian ternak untuk meningkatkan status kesehatan hewan ternak serta mencegah wabah PMK di Provinsi Riau.

METODOLOGI PENELITIAN

Pada penelitian ini bertujuan untuk mengelompokkan hewan ternak sapi yang mempunyai tingkat Kesehatan lebih tinggi berdasarkan variabel yang tersedia. Pada gambar 1 terdapat metedologi penelitian yaitu:

Penelitian ini menerapkan langkah- langkah seperti yang ditunjukkan pada Gambar 1, diantaranya identifikasi masalah, pengumpulan data, *pre-processing*, *Data mining* menggunakan algoritma *k-medoids* serta tahap Hasil dan Analisa. Setelah mendapatkan total data yang akan digunakan kemudian data di proses perhitungan menggunakan Rapidminer.

2.1 Identifikasi Masalah

Pada tahapan ini, identifikasi masalah sangat penting dilakukan untuk mengetahui pengelompokkan kategori Kesehatan hewan sapi pada suatu daerah. Identifikasi ini meliputi kebuutuhan data yang akan digunakan, penetapan atribut tabel untuk memproses data dengan algoritma *K-Medoids*, jumlah cluster yang akan dibentuk, dan penggunaan aplikasi Rapidminer untuk memproses data cluster.[8]

2.2 Pengumpulan Data

Pada tahap ini diperoleh informasi vaksinasi PMK dari Dinas Peternakan dan Kesehatan Hewan Provinsi Riau untuk menentukan parameter yang akan digunakan dalam penelitian. Data yang diperlukan untuk data sampel dalam penerapan algoritma *K-Medoids* diantaranya Status Vaksin, Rumpun, Jenis Kelamin dan Umur.

2.3 Pre-processing Data

Data vaksinasi PMK Provinsi Riau tahun 2022 merupakan data sekunder dalam dilakukan nya proses penelitian. Atribut data yang digunakan berupa Status Vaksin, Rumpun, Jenis Kelamin dan Umur. Total unit pengamatan berjumlah 69936 hewan ternak yang telah di vaksinasi. Berikut Sampel data pada tabel 1.

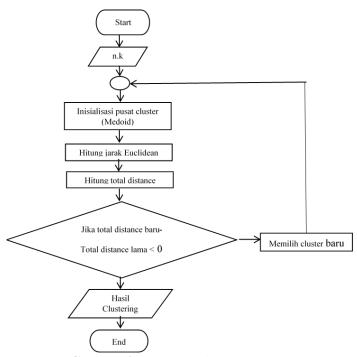
Kartu Ternak Status Vaksin Rumpun Jenis Kelamin Umur 9205 12 Tahun 1 Sapi Bali Betina 21750 2 8 Tahun Sapi Bali Betina 2 21751 Sapi Bali 8 Tahun Betina 7 Tahun 21794 2 Sapi Bali Betina 60908048 2 Tahun 1 Sapi Brangus Betina 60908100 1 Sapi Bali 2 Tahun Jantan 60908124 Sapi Bali Jantan 2 Tahun

Tabel 1. Data Vaksinasi PMK di Provinsi Riau

Pre-processing yang dilakukan dalam penelitian ini terdiri dari pendefinisian tabel ID yang diidentifikasi sebagai objek yang akan di cluster, mengubah format atribut menjadi tipe data numerik dan atribut lain yang digunakan dalam penempatan hasil clustering (tipe data integer untuk angka). Transformasi data dilakukan dengan menggunakan atribut rumpun dan jenis kelamin serta umur.

Tabel 2. Hash Transormasi Data Vaksinasi Tivik Tovinsi Kida					
Kartu Ternak	Status Vaksin	Rumpun	Jenis Kelamin	Umur	
9205	1	1	2	12	
21750	2	1	2	8	
21751	2	1	2	8	
21749	2	1	2	7	
60908048	1	6	2	2	
60908100	1	1	1	2	
60908124	1	1	1	2	

Tabel 2. Hasil Transormasi Data Vaksinasi PMK Provinsi Riau


2.4Proses Data Mining

Penambangan data dikenal dalam database sebagai *Knowledge Discovery in Database* (KDD), yang menggunakan pengumpulan data dan data historis untuk mencari pola maupun hubungan dalam kumpulan data yang besar. Setiap sampel yang diperoleh harus memiliki kegunaan dan manfaat tertentu. Memilih algoritma atau metode yang tepat sangat bergantung pada tujuan dan keseluruhan proses KDD. [9]

2.5Perhitungan Algoritma K-Medoids

Algoritma *k-medoids* merupakan algoritma clustering yang mirip dengan algoritma *k-means*. Dimana kelebihannya terletak pada kelemahan umum dari algoritma *k-means*. Dan hasil dari proses clusteringnya tidak bergantung pada urutan input dataset.[10] *Partitioning Around Medoids* bertujuan untuk meminimalkan kerentanan partisi yang ekstrem dalam kumpulan data [11][12].

Langkah-langkah penerapan algoritma *k-medoids* :

Gambar 2. Alur Algoritma k-medoid

- 1. Tentukan *k* (jumlah *cluster*) yang diinginkan
- 2. Pilih secara acak medoid awal sebanyak *k* dari *n* data.
- 3. Hitung jarak masing-masing obyek ke medoid sementara, kemudian tandai jarak terdekat obyek ke medoid.
- 4. hitung totalnya kemudian lakukan iterasi medoid
- 5. Hitung total simpangan (S) dengan menghitung total distance baru total distance lama. Jika S < 0 maka tukar objek dengan data cluster non medoids
- 6. Ulangi langkah 3-5 hingga tidak terjadi perubahan pada *medoid*, sehingga di dapatkan *cluster* beserta anggota *cluster* masing masing.

2.6Hasil dan Analisa

2.6.1 Rapid Miner

Rapidminer merupakan perangkat lunak manajemen penambangan data.dimana penelitian ini menggunakan *tools Rapidminer* sehingga didapatkannya beberapa *cluster*.

2.6.2 Davies Bouldin Index

Pendekatan DBI bertujuan untuk memaksimalkan jarak antar cluster dan meminimalkan jarak antar objek dalam sebuah cluster. Nilai indeks berada pada range (0,1), dimana semakin rendah nilai DBI yang diperoleh (non negatif ≥ 0) maka cluster yang diperoleh semakin baik. [13]

Persamaan untuk mengetahui nilai DBI

$$DBI = \frac{1}{\kappa} \sum_{m=1}^{K} Ri$$
 (2)

dengan

$$Ri = \max_{j=1,...k, m \neq n} Rmn \tag{3}$$

Serta

$$\frac{Rmn}{m \neq n} = \frac{var(Cm) + var(Cn)}{||cm - cn||}$$
(4)

Ket:

Cm = cluster m dan cm adalah medoid dari cluster m

HASIL DAN PEMBAHASAN

3.1 Pengolahan Data

1. Tentukan k (jumlah *cluster*) yang diinginkan dimana *cluster* yang akan digunakan yaitu 2 *cluster* Dari 69936 data sapi, maka dipilih secara acak dimana diasumsikan objek ke-1 dan objek ke-5 sebagai medoid awal.

Tabel 3. Medoid Awal

Medoid	Status Vaksin	Rumpun	Jenis Kelamin	Umur
C1	1	1	2	3
C5	2	1	2	5

2. Menghitung jarak terdekat (*cost*) menggunakan persamaan *Euclidian Distance* seperti pada persamaan (1), yaitu :

$$d(m,n) = \sqrt{\sum_{i}(x_m - y_n)^2} \tag{1}$$

Clustering Vaksinasi Penyakit Mulut dan Kuku Di Provinsi Riau Menggunakan Algoritma K-Medoids

Keterangan:

d(m,n): Jarak data ke pusat cluster,

m : data asli,n : data medoid,i : Jumlah atribut data.

Perhitungan dengan medoid awal adalah sebagai berikut:

1. Perhitungan data ke-1 terhadap pusat cluster 1

$$d(1,1) = \sqrt{(1-1)^2 + (1-1)^2 + (2-2)^2 + (3-12)^2} = 9$$

2. Perhitungan data ke-1 terhadap pusat cluster 2

$$d(1,2) = \sqrt{(2-1)^2 + (1-1)^2 + (2-2)^2 + (5-12)^2} = 7,071067812$$

Hasil perhitungan seluruh data disajikan dalam tabel berikut :

TabeL 4. Hasil Perhitungan Iterasi Ke-1

Objek Ke	Cost 1	Cost 2
1	9	7,071067812
2	5,099019514	3
3	5,099019514	3
4	4,123105626	2
5	2,236067977	1
•••	•••	•••
•••	•••	•••
69934	5,099019514	5,916079783
69935	1,414213562	3,31662479
69936	1,414213562	3,31662479
Jumlah	488840,6571	513917,3531
Total Cost	1002758,01	

3. Pilihlah objek secara acak dari setiap *cluster* yang digunakan sebagai kandidat medoid baru (non medoid). **Tabel 5**. Medoid Baru (Non-Medoid)

Medoid	Status Vaksin	Rumpun	Jenis Kelamin	Umur
C2	2	1	2	8
C10	2	1	2	5

4. Hitunglah jarak setiap objek di setiap cluster menggunakan medoid yang baru kemudian tandai jarak terdekat objek ke medoids.

Perhitungan dengan medoid awal adalah sebagai berikut:

1. Perhitungan data ke-1 terhadap pusat cluster 1

$$d(1,1) = \sqrt{(2-1)^2 + (1-1)^2 + (2-2)^2 + (8-12)^2} = 9$$

2. Perhitungan data ke-1 terhadap pusat cluster 2

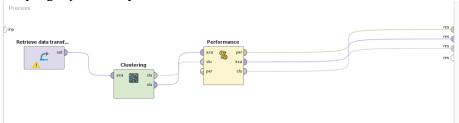
$$d(1,2) = \sqrt{(2-1)^2 + (1-1)^2 + (2-2)^2 + (5-12)^2} = 7,071067812$$

Hasil dari perhitungan iterasi ke-2 disajikan dalam tabel berikut :

Tabel 6. Hasil Perhitungan Iterasi Ke-2

Objek Ke	Cost 1	Cost 2			
1	4,123106	7,071068			
2	0	3			
3	0	3			
4	1	2			
•••	•••	•••			
•••	•••	•••			
69934	7,874008	5,91608			
69935	6.164414	3.316625			

69936	6,164414	3,316625
Jumlah	626554,7	513917,4
Total Cost	1140472	


5. Hitung total simpangan (S) dengan menghitung total distance baru – total distance lama. Jika S < 0 maka tukar objek dengan data cluster non medoids.

$$S = total cost baru - total cost lama$$

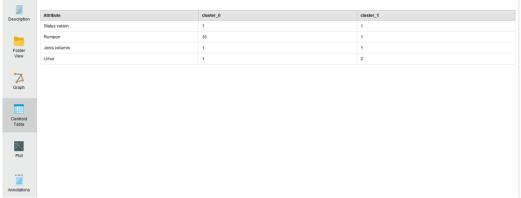
 $S = 1140472 - 1002758,01$
 $S = 137714$

6. Lakukan pengulangan pada langkah 3-5 hingga tidak adanya perubahan medoid yang terjadi, sehingga menghasilkan *cluster* dan anggota *cluster* yang sesuai. Setelah itu dilakukan proses clustering untuk menemukan k dari data cluster medoid, yang dipilih berdasarkan nilai terkecil dari DBI.

3.2 Implementasi dan Hasil

Tahapan ini data vaksinasi ternak hewan dikelompokkan. Langkah pertama adalah memasukkan data yang dinormalisasi ke dalam Rapidminer kemudian mengelompokkannya menggunakan algoritma *k-medoids* untuk menentukan nilai k yang diperlukan, yaitu 2 cluster.

Gambar 3. Hasil Penerapan K-Medoids


Setelah desain selesai, project dijalankan dan diperoleh hasil clustering setelah dijalankan, maka diperoleh.

Cluster Model

Cluster 0: 21894 items Cluster 1: 48042 items Total number of items: 69936

Gambar 4. Hasil Clustering

Maka didapatkan cluster model dimana pada *cluster* 0 atau *cluster* pertama berjumlah 21894 sapi dan *cluster* 1 atau *cluster* kedua berjumlah 48042 sapi dengan total sapi yaitu 69936 sapi. . Kemudian nilai titik medoid dapat diketahui melalui pola persebaran *cluster*

Gambar 5. Nilai Titik Medoid


Cluster pertama atau cluster 0 adalah cluster dengan kekebalan hewan rendah sehingga banyak hewan yang rentan terinfeksi PMK Sedangkan pada cluster kedua atau cluster 1 tingkat kekebalan hewan tinggi sehingga sedikit yang terinfeksi PMK.

Data sebaran klaster vaksinasi PMK di Provinsi Riau menggunakan *k-medoids* pada K2 dengan total data 69936 dirincikan sebagai berikut. klaster 0 sebanyak 21894 sapi dan klaster 1 sebanyak 48042 sapi.

Tabel 7. Hasil	Cluster Dengar	n Menggunakan	K-Medoids

NO	Kartu ternak	Status vaksin	Rumpun	Jenis Kelamin	Umur	Cluster
1	9205	1	1	2	12	Cluster 1
2	21750	2	1	2	8	Cluster 1
	••••		• • •	•••	•••	•••
69933	6090656	1	16	1	1	Cluster 0
69934	60908084	1	6	2	2	Cluster 1
69935	60908100	1	1	1	2	Cluster 1
69936	60908124	1	1	1	2	Cluster 1

Kemudian dilakukan nya proses perhitungan jarak dari setiap klaster dalam penentuan optimalisasi sebuah klaster, diperlukan sebuah pengujian validasi. Dalam pengujian DBI, apabila nilai yang dihasilkan sebuah cluster mendekati 0 maka hasil klaster yang terbentuk semakin baik. Pada penelitian ini, pengujian validasi menggunakan *DBI*. Nilai hasil pengujian DBI pada K2 senilai -0.482.

KESIMPULAN

Berdasarkan hasil penelitian, implementasi dan uji pengetahuan tentang vaksinasi PMK sapi dengan algoritma *k-medoids* menggunakan Rapidminer, maka diperoleh kesimpulan yaitu terdapat 2 *cluster* yang mengelompokkan tingkat kekebalan hewan bahwa mereka mudah terinfeksi penyakit mulut dan kuku. Pada data *clustering* pertama jumlah vaksinasi kedua lebih sedikit sehingga mewakili ternak sapi dengan kekebalan yang rendah yaitu sebanyak 21.894 sapi sedangkan data *clustering* kedua jumlah vaksin kedua lebih tinggi daripada cluster pertama sehingga mewakili ternak sapi dengan kekebalan yang tinggi yaitu sebanyak 48.042 sapi. Adapun nilai uji validitas menggunakan DBI yaitu -0.482. Proses penelitian *clustering* ini dapat dikembangkan dan digabungkan dengan algoritma *clustering* lainnya untuk meningkatkan penelitian dengan menambahkan data dan atribut yang lebih kompleks.

DAFTAR PUSTAKA

- [1] H. Rusnedy, G. W. Nurcahyo, and S. Sumijan, "Identifikasi Tingkat Pemakaian Obat Menggunakan Metode Fuzzy C-Means," *Jurnal Informasi dan Teknologi*, vol. 3, pp. 196–201, 2021, doi: 10.37034/jidt.v3i4.152.
- [2] M. Riskiatul Rohma *et al.*, "Kasus penyakit mulut dan kuku di Indonesia: epidemiologi, diagnosis penyakit, angka kejadian, dampak penyakit, dan pengendalian Foot and Mouth Disease Virus cases in

97

- Indonesia: Epidemiology, disease diagnosis, incidence rate, disease impact, and treatment", doi: 10.25047/animpro.2022.331.
- [3] A. U. Bani and A. Asruddin, "Pendeteksian Penyakit Mulut dan Kuku Pada Sapi dengan Menerapkan Metode Naïve Bayes," *Journal of Computer System and Informatics (JoSYC)*, vol. 3, no. 4, pp. 264–268, Aug. 2022, doi: 10.47065/josyc.v3i4.1934.
- [4] R. Prasetya, E. Sudarsono, D. Peternakan, K. Hewan, and K. Lamongan, "Kajian Epidemiologi Kejadian Diduga Penyakit Mulut dan Kuku di Kabupaten Lamongan Epidemiological Study of Suspected Occurrence of Foot and Mouth Disease in Lamongan Regency." [Online]. Available: https://e-journal.unair.ac.id/JBMV
- [5] R. Tawaf, "Dampak Sosial Ekonomi Epidemi Penyakit Mulut dan Kuku terhadap Pembangunan Peternakan di Indonesia," *Prosiding Seminar Nasional Agroinovasi Spesifik Lokasi Untuk Ketahanan Pangan Pada Era Masyarakat Ekonomi ASEAN*, no. 2, pp. 1535–1547, 2018.
- [6] B. R. S, M. F. Isnaini, Rozi, B. Poermadjaja, and Saptariniz, "Penyidikan Kasus Penyakit Pada Sapi Suspect PMK di Kabpaten Pamekasan Tahun 2019," *Prosiding Seminar Surveilans dan Penyidikan Penyakit Hewan*, vol. 1, no. 1, pp. 115–122, 2020.
- [7] D. Marlina, N. Fauzer Putri, A. Fernando, and A. Ramadhan, "Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak," *Jurnal CoreIT*, vol. 4, no. 2, 2018.
- [8] D. Sepri, Y. Fimazid, S. Bangek Koto Tangah, and W. Sumatera, "Pengelompokan Penyebaran Covid-19 di Kota Padang Menggunakan Algoritma K-Medoids".
- [9] "PENERAPAN ALGORITMA K-MODES CLUSTERING UNTUK PENGELOMPOKKAN DESA RAWAN KEBAKARAN DI PROVINSI RIAU (Studi Kasus: BPBD Riau)."
- [10] A. A. D. Sulistyawati and M. Sadikin, "Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan," *Sistemasi*, vol. 10, no. 3, p. 516, 2021, doi: 10.32520/stmsi.v10i3.1332.
- [11] S. A. Abbas, A. Aslam, A. U. Rehman, W. A. Abbasi, S. Arif, and S. Z. H. Kazmi, "K-Means and K-Medoids: Cluster Analysis on Birth Data Collected in City Muzaffarabad, Kashmir," *IEEE Access*, vol. 8, pp. 151847–151855, 2020, doi: 10.1109/ACCESS.2020.3014021.
- [12] D. Sinta Saputri, G. Maha Putra, M. Fitri Larasati, P. Studi Sitem Informasi, and S. Tinggi Manajemen Informatika dan Komputer Royal Kisaran, "IMPLEMENTATION OF THE K-MEANS CLUSTERING ALGORITHM FOR THE COVID-19 VACCINATED VILLAGE IN THE UJUNG PADANG SUB-DISTRICT," *Jurnal Teknik Informatika (JUTIF)*, vol. 3, no. 2, pp. 261–267, 2022, doi: 10.20884/1.jutif.2022.3.2.165.
- [13] A. Astri Az-Zahra *et al.*, "Penerapan Algoritma K-Modes Clustering dengan Validasi Davies Bouldin Index pada Pengelompokkan Tingkat Minat Belanja Online di Provinsi Daerah Istimewa Yogyakarta."