Characteristic of Background Seismic Noise of Local Tarutung Earthquake Based on Power Spectral Density and Probabilistic Density Function Method

Authors

  • Marzuki Sinambela Undergraduate Program in Applied of Instrumentation Meteorology, Climatology and Geophysics STMKG, Tangerang, Banten, Indonesia
  • Puji Hartoyo Program Studi Fisika, Fakultas Teknik dan Sains, Universitas Nasional, Jakarta

Keywords:

PSDPDF, Tarutung, background noise, digital broadband, seismic networks

Abstract

An evaluation of four broadband BMKG stations' ambient seismic noise is provided. Knowing the seismic ambient noise tiers confirmed by a community of seismic stations is essential for earthquake monitoring and detection purposes in the Sumatra area. Waveform records from May 2020 are used to calculate the power spectral density and likelihood density characteristic (PSDPDF) for a single day when an excessive noise stage is detected. This study aims to assess the vertical channel of waveform data using waveform information in miniSEED and SAC architecture. Because of their low probability of occurrence, the method used permits the use of data contaminated with earthquakes (a 4.8 magnitude earthquake occurred on May 11, 2020, at Tarutung, North Sumatera, Indonesia) and other demanding signals. The results obtained are extremely important for assessing the overall performance of the current seismic broadband stations, evaluating the web page resolution of new stations, and modifying the detection settings for the computerized processing machine in the Indonesia Seismic Network. Compared to TTSM, TKSM, and RSSM stations, the noise at LSTM stations is weaker, but the likelihood of an increase increases at high frequencies. Cultural noise in human endeavors produces certain noise and fluctuation over extended periods of time, which is typically certified for the process of earthquake signals

Downloads

Download data is not yet available.

References

K. Tarigan, M. Sinambela, M. Panjaitan, P. Simangunsong, and H. K. Siburian, “Machine Learning for Waveform Spectral Analysis on Nuclear Explosion Signal and Performance of Broadband Vertical Component,” J. Phys. Conf. Ser., vol. 1120, no. 1, pp. 748–752, 2018, doi: 10.1088/1742-6596/1120/1/012083.

H. Sirait et al., “Time Frequency Signal Classification Using Continuous Wavelet Transformation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 851, no. 1, 2020, doi: 10.1088/1757-899X/851/1/012045.

M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann, “ObsPy: A python toolbox for seismology,” Seismol. Res. Lett., vol. 81, no. 3, pp. 530–533, 2010, doi: 10.1785/gssrl.81.3.530.

B. Edwards, T. Kraft, C. Cauzzi, P. Kästli, and S. Wiemer, “Seismic monitoring and analysis of deep geothermal projects in st Gallen and Basel, Switzerland,” Geophys. J. Int., vol. 201, no. 2, pp. 1022–1039, 2015, doi: 10.1093/gji/ggv059.

J. A. Salmond and I. G. McKendry, “A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality,” Prog. Phys. Geogr., vol. 29, no. 2, pp. 171–188, 2005, doi: 10.1191/0309133305pp442ra.

D. E. McNamara, C. R. Hutt, L. S. Gee, H. M. Benz, and R. P. Buland, “A Method to Establish Seismic Noise Baselines for Automated Station Assessment,” Seismol. Res. Lett., vol. 80, no. 4, pp. 628–637, 2009, doi: 10.1785/gssrl.80.4.628.

R. Sleeman, A. van Wettum, and J. Trampert, “Three-channel correlation analysis: A new technique to measure instrumental noise of digitizers and seismic sensors,” Bull. Seismol. Soc. Am., vol. 96, no. 1, pp. 258–271, 2006, doi: 10.1785/0120050032.

N. Jana, C. Singh, R. Biswas, N. Grewal, and A. Singh, “Seismic noise analysis of broadband stations in the Eastern Ghat Mobile Belt of India using power spectral density,” Geomatics, Nat. Hazards Risk, vol. 8, no. 2, pp. 1622–1630, Dec. 2017, doi: 10.1080/19475705.2017.1365777.

A. F. Nori Nakata, Lucia Gualtieri, Seismic Ambient Noise. 2019.

M. Sinambela, M. Situmorang, K. Tarigan, S. Humaidi, and T. Rahayu, “Design of solar power system for the new mini region of broadband seismometer shelter in Tiganderket, Karo, North Sumatera, Indonesia,” Case Stud. Therm. Eng., vol. 22, 2020, doi: 10.1016/j.csite.2020.100747.

E. Wolin and D. E. Mcnamara, “Establishing High-Frequency Noise Baselines to 100 Hz Based on Millions of Power Spectra from IRIS MUSTANG,” no. Xx, 2019, doi: 10.1785/0120190123.

M. Sinambela et al., “Detection of Background Seismic Noise on Selected Digital Broadband Network Stations:Tarutung Earthquake,” Mecn. 2020 - Int. Conf. Mech. Electron. Comput. Ind. Technol., pp. 74–79, Jun. 2020, doi: 10.1109/MECNIT48290.2020.9166597.

M. Sinambela, M. Situmorang, K. Tarigan, and S. Humaidi, “Development and testing of an advance seismic monitoring to evaluate the performance of new mini region in the onan ganjang station,” J. Theor. Appl. Inf. Technol., vol. 8, no. 10, 2020.

Marzuki Sinambela, “Karakterisasi Ambient Noise dan Klasifikasi Waveforms dengan Pendekatan Machine Learning pada Jaringan Seismik Sumatera Bagian Utara,” 2020.

M. Sinambela, K. Tarigan, and S. Humaidi, “Classification of Seismic Signal by Evaluating Broadband Networks Station in Sumatera Fore-Arc Classification of Seismic Signal by Evaluating Broadband Networks Station in Sumatera Fore-Arc,” 2020, doi: 10.1088/1742-6596/1485/1/012054.

A. Trnkoczy, P. Bormann, W. Hanka, L. G. Holcomb, and R. L. Nigbor, “Site Selection, Preparation and Installation of Seismic Stations,” pp. 1–108.

P. Bormann, “Seismic signals and noise,” Bormann, P.(ur.), vol. 1, no. August, pp. 1–34, 2002, doi: 10.2312/GFZ.NMSOP-2.

Y. Vaezi et al., “Seismic signals and noise,” Geophys. J. Int., vol. 2, no. 1, pp. 33–47, 2004, doi: 10.2312/GFZ.NMSOP-2.

Peterson, “peterson_usgs_seismic_noise,” USGS Open File Rep. 93-322, p. 94, 1993.

S. Kang et al., “A new method to improve the detection of co-seismic ionospheric disturbances using sequential measurement combination,” Sensors (Switzerland), vol. 19, no. 13, Jul. 2019, doi: 10.3390/s19132948.

T. Megies, M. Beyreuther, R. Barsch, L. Krischer, and J. Wassermann, “ObsPy - what can it do for data centers and observatories?,” Ann. Geophys., vol. 54, no. 1, pp. 47–58, 2011, doi: 10.4401/ag-4838.

T. Megies, M. Beyreuther, R. Barsch, L. Krischer, and J. Wassermann, “ObsPy - what can it do for data centers and observatories?,” Ann. Geophys., 2011, doi: 10.4401/ag-4838.

Downloads

Published

2025-05-13

How to Cite

Sinambela, M. ., & Hartoyo, P. . (2025). Characteristic of Background Seismic Noise of Local Tarutung Earthquake Based on Power Spectral Density and Probabilistic Density Function Method. JUKI : Jurnal Komputer Dan Informatika, 7(1), 59–69. Retrieved from https://ioinformatic.org/index.php/JUKI/article/view/1027