Memprediksi Jumlah Siswa Baru Menggunakan Metode Backpropagation (STUDI KASUS: SMK HARAPAN BANGSA KUALA)

Authors

  • Kris Jayanti STMIK Kaputama Binjai
  • Katen Lumbanbatu STMIK Kaputama Binjai
  • Suci Ramadani STMIK Kaputama Binjai

DOI:

https://doi.org/10.53842/juki.v3i1.40

Keywords:

Backpropagation, Prediction of the number of new students, Artificial Neural Networks.

Abstract

Artificial Neural Network (ANN) and time series data can be used for forecasting methods well. Artificial Neural Network is a method whose working principle is adapted from a mathematical model in humans or biological nerves. Neural networks are characterized by; (1) the pattern of connections between neurons (called architecture), (2) determining the weight of the connection (called training or learning), and (3) the activation function. The research objective was to obtain the best artificial neural network architecture, comparing the two methods of Backpropogation Neural Networks with the Radial Base Function Artificial Neural Network (RBF) method. This research is a research using real data (true experimental). This research was conducted at SMK Harapan Bangsa Kuala, which was obtained from 2015 to 2019. The results showed that for one iteration using the backpropagation method the result was 0,378197657 with a squared error 0.143033468, then the results achieved were not in accordance with the target.

References

R. Rachman and A. Mukminin, “Penerapan Metode Certainty Factor Pada Sistem Pakar Penentuan Minat dan Bakat Siswa SD,” Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, 2018, doi: 10.23917/khif.v4i2.6828.

E. N. Wahyudi, “Teknik Klasifikasi untuk Melihat Kecenderungan Calon Mahasiswa Baru dalam Memilih Jenjang Pendidikan Program Studi di Perguruan Tinggi,” Teknologi Informasi DINAMIK, vol. 18, no. 1, pp. 55–64, 2013.

J. Purnama, “SISTEM PENDUKUNG KEPUTUSAN SELEKSI PENERIMAAN SISWA BARU MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW) (Studi Kasus : SMA Negeri 01 Kalirejo).” [Online]. Available: www.stmikpringsewu.ac.id

J. J. Siang, “Jaringan Syaraf Tiruan & Pemrogramannya Menggunakan Matlab,” 2009, Accessed: May 29, 2021. [Online]. Available: //fia.ub.ac.id/katalog/index.php?p=show_detail&id=7824&keywords=

S. Arikunto, “Metodelogi penelitian,” Yogyakarta: Bina Aksara, 2006.

Sugiyono, Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: PT Alfabet, 2016.

M. Agustin and T. Prahasto, “Penggunaan Jaringan Syaraf Tiruan Backpropagation Untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer Di Politeknik Negeri Sriwijaya,” JURNAL SISTEM INFORMASI BISNIS, vol. 2, no. 2, pp. 089–097, Jun. 2012, doi: 10.21456/vol2iss2pp089-097.

I. Taufik and A. Sitio, “IMPLEMENTASI JARINGAN SYARAF TIRUAN UNTUK PENGELOMPOKKAN MINAT KOMPETENSI MAHASISWA STMIK PELITA NUSANTARA MEDAN,” Jurnal Mantik Penusa, vol. 2, no. 2, pp. 80–83, 2018.

B. S. Koentjoro, I. S. Sitanggang, and A. K. Makarim, “Model Simulasi dan Visualisasi Prediksi Potensi Hasil dan Produksi Kedelai di Jawa Timur,” Jurnal Penelitian Pertanian Tanaman Pangan, vol. 34, no. 3, p. 195, 2016, doi: 10.21082/jpptp.v34n3.2015.p195-201.

R. S. Wahono, “Penerapan Algoritma Genetika untuk Optimasi Parameter pada Support Vector Machine untuk Meningkatkan Prediksi Pemasaran Langsung,” Journal of Intelligent Systems, vol. 1, no. 2, pp. 115–119, 2015.

Downloads

Published

2021-05-29

How to Cite

Jayanti, K., Katen Lumbanbatu, & Suci Ramadani. (2021). Memprediksi Jumlah Siswa Baru Menggunakan Metode Backpropagation (STUDI KASUS: SMK HARAPAN BANGSA KUALA). JUKI : Jurnal Komputer Dan Informatika, 3(1), 10–16. https://doi.org/10.53842/juki.v3i1.40